Assessing the Performance Overhead of a
Self-Adaptive System

Vitor Silva, Joao M. Franco, Francisco Correia,
Raul Barbosa, and Mario Zenha-Rela

CISUC - Centre for Informatics and Systems
University of Coimbra, Portugal
vhsilva@student.dei.uc.pt
{jmfranco, fcorreia, rbarbosa,mzrela}@dei.uc.pt

Abstract. Self-adaptive systems continuously monitor runtime proper-
ties and analyze, plan and execute adaptation strategies to adjust their
behavior in order to meet satisfactory quality levels. These systems have
been applied to a wide variety of scenarios ranging from managing clus-
ters to self-driving cars. However, such achievements require significant
computational power, and there is no solid knowledge on which adap-
tation phases experience the higher consumption of resources. This is
unfortunate, as only such insight can support a systematic optimization
by improving tools, algorithms or technologies.

In this paper we assess the performance of a reference model architecture
for self-adaptive systems, the MAPE-K loop, identify bottlenecks, then
suggest and implement some improvements. Finally, we present a perfor-
mance comparison between different approaches including the one with
our improvements and show the actual financial costs of deploying such
systems in a mainstream cloud computing service (AWS). We show that
our approach leads to a reduction of up to 45 % on annual computational
costs, without degradation on the quality of service provided.

1 Introduction

Self-adaptive systems are able to adjust their behavior in response to changes
on the environment or the system itself. They operate with minimal human
intervention, or even without any intervention, as they are designed to meet
desired quality goals, such as performance, availability and security. Traditional
self-adaptive systems, beyond the basic functionalities, require a set of com-
plementary independent tasks to monitor, analyze, decide and act in order to
respond to changes while at the same time maintaining the desired quality lev-
els. However, a system that is constantly monitoring, planning decisions and
evaluating possible adaptation strategies incurs an increased computational cost
when compared to non-adaptive solutions. This overhead can have a detrimen-
tal affect on baseline performance specially under a high system load. To the
best of our knowledge, the research community has not addressed the impact of
the self-adaptive mecahnisms on the baseline computational resources, neither
is clearly known which adaptation phase consumes more resources.

2 V. H. Silva, J. M. Franco, F. Correia, R. Barbosa, M. Zenha-Rela

In this paper we analyze the typical self-adaptation loop [1] based on the
MAPE-K model proposed by IBM in 2006 [2] in terms of performance and
cost of deploying and maintaining such solutions. In particular, we carry out a
comparison between non-adaptive and adaptive systems taking into considera-
tion their performance and the actual achievement of the desired quality goals.
Finally, we identify the components that are top consumers of computational
resources and implemented several strategies to reduce that overhead.

Our paper contributes to the research community by assessing the computa-
tional overhead of a self-adaptive system in both the controller and the incurred
overhead in the target system. Moreover, this study allowed to identify the over-
head of each phase of the adaptation loop (monitoring, analyzing, planning and
execution) and also the amount of resources spent by having a self-managing,
healing and optimizing system driving adaptations to meet desired quality goals.

In the evaluation procedure, we adopted Rainbow [3-5] as the self-adaptive
solution and applied a case-study of a news infrastructure system with a work-
load based on a real Internet phenomenon representing a flood of visitors traffic
(the slashdot effect). In each experiment, we gathered information about perfor-
mance, the usage of CPU and memory, which allowed us to identify implemen-
tation issues and possible improvements.

This paper is organized as follows. Section 2 presents the related work and
Section 3 details the method adopted in this study. In Section 4 we introduce
the case-study used for evaluating the approach, whose results are presented and
discussed in Section 5. Our contributions are highlighted in Section 6 and the
limitations of this study are identified in Section 7. Section 8 closes the paper.

2 Related Work

Self-adaptive systems aim to automate processes in order to discard manual
activities which are time-consuming, error-prone and costly. To address this IBM
proposed the MAPE-K loop [2] which became the reference model for the self-
adaptive community [1,6] and encompasses the following phases:

— Monitor - Collects runtime data about system properties, such as response
time or failed requests;

— Analysis - Reasons about the data received from the Monitoring phase and
decides whether an adaptation is required taking into consideration the ser-
vice quality goals;

— Plan - Decides which adaptation strategy or the course of action is more
appropriate to achieve the goals;

— Execute - This phase is responsible to apply the actions determined in the
Planning phase;

— Knowledge - A base of knowledge shared between the different phases of the
MAPE-K loop that includes information such as the model of the system,
collected runtime properties and results of analysis.

Joao Miguel Franco

Joao Miguel Franco

Joao Miguel Franco

Joao Miguel Franco

Joao Miguel Franco

Assessing the Performance Overhead of a Self-Adaptive System 3

Cheng et al. [4] studied the effectiveness of Rainbow self-adaptive system by
assessing the maintainability of quality attributes in the face of changes, run-
time overheads of adaptation and the engineering effort required to deploy such
system. They also estimated the overhead of computational resources needed to
run such systems and suggested that this particular self-adaptive solution would
consume less than 2% of the CPU in the 'Delegate’ process located in target
system. Since these estimations have been performed by the development team
of the self-adaptive system under study, we decided to validate their results and
extend their work by determining the resource overhead in the controller and
also, in each one of the MAPE-K phases.

Oreizy et al. [7] proposed an infrastructure with two independent processes
encompassing an evolution and an adaptation phases. During his study, authors
identified large computational overheads in specific phases of the MAPE-K loop,
specially in the Monitoring phase. The study concludes by suggesting the de-
velopment of new technologies and algorithms to collect metrics at runtime in
order to decrease the consumption of computational resources.

Villegas et al. [8] proposed a framework to evaluate quality-driven self-adaptive
systems by assessing certain properties that are observable from the controller.
In this set of observable properties, the small-overshoot measured could be re-
garded as the adaptation overhead in the context of our work. However, the
authors define this small-overshoot as the utilization of computational resources
in the execution of an adaptation in order to understand if it performs well
under given conditions [8-10], while in our work we assess the computational
resources used by the self-adaptive algorithm itself distinguishing between each
one of the MAPE-K phases. Thus, we do not assess a particular adaptation, but
the whole system identifying the excess of computational resources required to
deploy a self-adaptive system and also, to compare with the resources used in a
non-adaptive approach.

3 Methodology

Assessing the performance of a self-adaptive system in order to identify issues
and distinguish between different phases of the adaptation loop, requires distinct
methods and techniques to be applied. In this section, we discuss which of these
techniques and methods have been applied to our study and how the performance
analysis was implemented.

3.1 Jmeter

We adopted Apache Jmeter as our stress measurement tool. Jmeter sends HTTP
requests to a Load Balancer server that redirects the requests among the avail-
able web-servers. Then, these servers reply with the appropriate response to the
Jmeter which records the response successfulness and the end-to-end time spent
in this operation.

4 V. H. Silva, J. M. Franco, F. Correia, R. Barbosa, M. Zenha-Rela

Furthermore, Jmeter provides OS Process Samplers [11] that can be used to
execute commands in the local machines. We used this service to execute .sh
bash shell scripts to collect CPU and memory measures on the required servers.

3.2 Scripts

The bash scripts were built to retrieve CPU and memory information from the
relevant processes like httpd, mysql and Self-Adaptive application processes.
These scripts invoke the Unix top command to gather relevant data of all alive
running processes, such as:

— PID: the process ID of each process;
— %CPU and %MEM: percentage of CPU and memory usage of each process;
— Command: name of the command that points to the PID of each process.

The first step is to collect the PIDs, through the command name, and save
them. It is essential to store the PIDs because there may be more than one
process running with the same PID and the same name (Parent and Children),
namely Httpd processes. Then, this information is parsed using the PIDs that
were stored before, in order to update the sum of %CPU and %MEM. The
second step is to append the information to a Comma-Separated Values (CSV)
file. This procedure occurs with a granularity of one second during the system
runtime.

3.3 NetBeans Profiler

In this study we performed a dynamic analysis in the system to identify which
method, class or package was consuming most resources. To this end, we used
the Netbeans Profiler [12] which maps the running bytecode instructions to the
written code.

When measuring CPU time, two types of profiling must be considered:

— Exclusive time: reports the time spent, in percent, of all methods or classes
in runtime;

— Inclusive time: reports the time spent, in percent, of the methods that were
called by a specific method in runtime.

When measuring memory usage, we have also two profiling options:

— Memory option: reports the amount of bytes allocated by a specific object
that was referenced by a specific method; this a dynamic perspective of the
memory usage in runtime.

— Garbage Collector option: calls the Garbage Collector and update the results
of memory allocation. This is a like a ’photo’, of memory usage at a specific
instant in time.

Assessing the Performance Overhead of a Self-Adaptive System 5

3.4 Analysis of Performance Metrics

The development team of the self-adaptive solution under study (described in
Section 4.1) kindly provided us the source code of their implementation. With
this information, we were able to analyze the code considering the results of the
performance metrics from the scripts and the trace information retrieved from
the Netbeans Profiler. Thus, we identified blocks of code that could be targets
for improvement. We therefore built a customized version of the self-adaptive
solution with the improvements identified, referred as improved adaptation from
now on.

4 Case-study

In this section we detail the case-study applied in our experimentation procedure.
More specifically, we specify the adopted self-adaptive solution, target system
and also the intrinsics regarding adaptation, such as goals, metrics and tactics
that trigger adaptations. The workload, based on a realistic Internet traffic pat-
tern (embedding a slashdot effect), was applied to the variants under test.

4.1 Self-Adaptive System

Rainbow, the platform under test, is an architecture-based self-adaptive sys-
tem developed at Carnegie Mellon University whose framework is based on the
MAPE-K approach and depicted in Figure 1.

Controller

Strategy Adaptation Architecture
Executor Manager Evaluator
Model

Manager

Gauges

Adapt Monitor

Effectors Probes

Target System

Fig. 1. The Rainbow framework

The Controller unit (also known as Oracle) is responsible for managing the
adaptation process and is in charge of the following activities:

Joao Miguel Franco

6 V. H. Silva, J. M. Franco, F. Correia, R. Barbosa, M. Zenha-Rela

— Monitor - gathers runtime data from the target system through Probes and
Gauges which update properties in the architectural model managed by the
Model Manager;

— Analysis - the Architecture Evaluator is responsible for determining from the
architectural model whether an adaptation should be triggered to achieve the
desired quality levels;

— Plan - the Adaptation Manager selects an adaptation strategy to cope with
the deviation from the correct behavior;

— Execute - the Strategy Executor is responsible for applying the sequence
of actions defined by the chosen adaptation strategy on the target system
through Effectors;

— Knowledge - data is shared between the different adaptation phases. In the
Rainbow framework this knowledge-base is handled by the Model Manager
which holds an architectural model of the runtime system.

The target system is defined as the resource that is being monitored and
adapted to meet the self-adaptation goals.
4.2 Target System

The target system of choice is Znn.com, a typical infrastructure for a news
website whose diagram can be depicted in Figure 2. The adaptation control unit

WebServer 1
®10.5.6.20

Wense;erz\l
10.5.6.21 o
: =

DataBase
@®10.5.6.10

Rainbow Master Oracle
(Controller)
@10.5.6.60:1082

LoadBalancer
(Delegate)
@10.5.6.30:1082

WebServer 3
©10.5.6.22

WebServer 4
©10.5.6.23

RMI Comunication ~—————> HTTP Requests _

Fig. 2. Znn.com diagram

(the Rainbow Controller), was setup in a separate Virtual Machine (VM) to
ensure the collection of resource usage values not affected by other processes or
tasks. Rainbow requires the setup of a small component (Delegate) to implement
Probes and Effectors in the target system. The case-study is composed by a
tiered architecture with a set of web-servers that serve content, both textual and

Assessing the Performance Overhead of a Self-Adaptive System 7

graphical, from back-end databases to clients. In addition, it uses a load-balancer
to reroute the requests from the clients to a pool of servers. The number of active
servers will depend on the selected adaptations to fulfill the system goals.

Each virtual machine of this configuration has the following hardware speci-
fications:

— CPU - Intel Xeon E2620 @2.40GHz, 1 Core;
— Memory - 512 MB;

— Virtual Disk - SATA Controller 16 GB;

— OS - Debian (64 bits).

4.3 Adaptation Goals

As in a typical news provider, ZNN.com focuses on serving news content reliably
to its customers while keeping the operating costs at the minimum. In short, the
adopted case-study aims to achieve the following quality objectives:

— Availability - The probability that the system is operating properly when
it is requested for use, i.e., the probability that the system is not failed or
undergoing a repair when it is invoked for use. In the ZNN.com case-study
we consider that a failure has occurred when a request is responded with
an incorrect HTTP status code, is lost, or takes more than 2 seconds to be
responded.

— Operational Cost - Measures the number of Virtual Machines (VMs) re-
quired in each scenario under test. We shall use actual cost figures form a
commercial cloud provider.

— Usage - The current percentual system load, measured as the amount of
work received by the system over the maximum load that is supported by
all the available servers.

Rainbow requires the definition of the trade-offs (weights) in multiple quality goal
scenarios. Table 1 defines the relative importance between quality dimensions.
It can be noticed that availability has been considered twice as important as
the current usage of computational resources (cost) or the current load of the
system (usage).

4.4 Adaptation Tactics

The Controller may select one of the following tactics to perform adaptation:

— Enlist server - From the server pool, if there is a spare server ready to
be activated, this strategy enables it. Regarding quality goals, this tactic
increases both availability and the used computational resources, since it
enables one more server, but decreases the utilization of each one;

8 V. H. Silva, J. M. Franco, F. Correia, R. Barbosa, M. Zenha-Rela

Table 1. Rainbow Utility preferences

Weight
Availability| 50 %
Cost 25 %

Usage 25%

’ Total ‘100%

— Discharge the slowest server - If there are at least two active servers,
our approach will discharge the slowest one (i.e., the one with the highest
mean response time). Since we are disabling a server, this tactic decreases
cost and may increase system usage;

— Discharge the least reliable server - If there is at least two active servers,
we will discharge the less reliable. In this case, we also decrease cost and in-
crease system utilization as the previous tactic, but it might increase avail-
ability by disabling a failing server.

4.5 Workload

We planned to test our system through a workload that could trigger different
adaptations and at the same time to be realistic. Hence, we adopted a workload
that is based on an Internet phenomenon, known as Slashdot effect or flash crowd.
This phenomenon is characterized by a low-traffic web-site which suddenly is
flooded by visitors for a period of time due to, for example, a breaking news or
redirected from a highly-visited website.

Our workload was designed based on the sample collected from a 2Princeton
website [13] and adapted from Cheng et al. [4]. The collected sample has been
scaled down from twenty-four to one hour, keeping a similarity on visit traffic
pattern:

Low Activity 1 minute of low activity requests (~ 39 requests/sec);
Sharp Rise 5 minutes of sharp rise in incoming traffic (~ 152 requests/sec);
High-Peak 18 minutes of high peak of requests (~ 313 requests/sec);
Ramp-Down 36 minutes of linear decrease on requests (~ 168 requests/sec)

5 Evaluation

We gathered data about the system performance, using the tools presented in
Section 3 to assess the overhead of computational resources in the Self-Adaptive
solution under study. Figure 3 depicts the results of that assessment, allowing
one to conclude that the Monitor phase consumed a large amount of CPU usage:
the Delegate process spent in average near to 58.7% of which 92.1 % has been
consumed by the that particular adaptation phase.

Assessing the Performance Overhead of a Self-Adaptive System 9

Fig. 3. Graph results for Profiler procedure

@ Knowledge ® Plan

@ Monitor @ Others (RMI, etc.) @ Analysis @ Execute
® Monior ® Others © Effectors @ RMI @ GUI © APEK © Others (M. GUL. ete)

(a) CPU usage by Dele- (b) CPU usage by Oracle (C) Memory wusage by (d) Memory usage by Or-

gate process: 58.7% process: 9.9 % Delegate process: 147 MB acle process: 320 MB

On the other hand, there was a huge bulk memory consumption in the Oracle
process. Of the 512 MB available in the virtual machine, the Oracle process
consumed in average 320 MB. In this case, the Knowledge and Plan phases of
MAPE-K loop spent in average close to 176 MB (54.9 % of 320 MB) and 77 MB
(24.1% of 320 MB), respectively.

This section details the experiments in terms of quality attributes and compu-
tational resources consumption considering three types of adaptive approaches:

Non-adaptive The non-adaptive approach with four permanently active servers
ready to serve client requests.

Adaptation Original adaptive approach aiming to achieve the quality goals
presented in Section 4.3 through the implemented tactics described in Sec-
tion 4.4. This is the original adaptive approach based on the baseline imple-
mentation which did not address performance concerns.

Improved Adaptation We profiled the original adaptation and identified a
large amount of CPU and memory usage by certain adaptation phases, ar-
chitectural components or blocks of code, as presented in Figure 3. Aiming
to identify sources of overhead, we examined the Monitoring and Knowledge
phases in detail as these had greater resource consumption. In the Monitoring
phase, we found that parsing the Apache logs to collect runtime data could
be significantly improved. Furthermore, we eliminated explicit calls to the
garbage collector (these aimed to reduce the memory footprint, but increased
the CPU usage disproportionally). Regarding the Knowledge phase, we iden-
tified and corrected a memory consumption problem in a method that copied
the runtime architectural model. The improved adaptation implements these
changes in the Monitoring and Knowledge phases, and results in a low per-
formance overhead without modifying the self-adaptive algorithm.

5.1 Analysis of Quality Attributes

Self-adaptive solutions perform changes to achieve and maintain reasonable qual-
ity goals. In this research work, we implemented a customized improvement of a

10 V. H. Silva, J. M. Franco, F. Correia, R. Barbosa, M. Zenha-Rela

traditional self-adaptive solution, the improved adaptation. One of our require-
ments is to present similar quality goals as traditional approaches and so, in this
section we discuss the quality outcome of the approaches under study.

Fig. 4. Graph results for Quality Attributes

IS

800 g
700
9 600 23
@ 500 o
b >
o 400 £
3
T 300 <2
@ .
& 200 £
3
100 z
1
00:00 00:10 00:20 00:30 00:40 00:50 01:00 00:00 00:10 00:20 00:30 00:40 00:50 01:00
Time (minutes) Time (minutes)
== Non-Adaptive === Adaptive Improved Adaptive == Non-Adaptive === Adaptive Improved Adaptive
(a) Throughput (b) Cost
100 o
5 9 2 99.96
2 80 €
o 70 9 9984
4
E 60]
= o
o 50 > 99.721
£ 40 £
2 30 2 99.602
n -—
o 20 =
o o
10 Z 99482
0
00:00 00:10 00:20 00:30 00:40 00:50 01:00 00:00 00:10 00:20 00:30 00:40 00:50 01:00
Time (minutes) Time (minutes)
[— Non-Adaptive == Adaptive — Improved Adaptive] — Non-Adaptive ==Adaptive — Improved Adaptive
(c) Response Time (d) Availability

Under those circumstances, Figure 4 illustrates the behavior of the different
solutions. Figure 4 (a) (throughput) depicts the number of requests processed
and one can notice that the values are similar across the approaches under study.
Only during the high-peak requests (between the 7¢* and 23"¢ minute) a slightly
higher throughput is observed for the Non-adaptive approach. This can be easily
understood as the Non-adaptive scenario has all four servers continuously active,
active while the other approaches only activate two additional servers to reach
similar levels of availability with much lower cost. This is apparent by observing
Figure 4 (b) that shows the number of active servers for each scenario.

Figure 4 (c) depicts the response time of each version and it is observable that
both adaptive and non-adaptive approaches present similar values during the low
activity period, sharp rise (0 to 6 minutes) and the ramp down (24 to 60 minutes).
However, during the high-peak of requests both adaptive approaches present high
oscillations in response times due to the adaptations being performed which
results in mean higher response times and also in sporadic lower availability
as illustrated in Figure 4 (d) (remember that availability is measured as the
capability to serve requests inside a predefined time frame).

Assessing the Performance Overhead of a Self-Adaptive System 11

Table 2. Complemented data of Quality Attributes

Active Resources
Requests Sgggzseztl Avai(l%l;ility B;Z?lier Database Sz\a}l‘r]\?:rs Oracle| Total
Non-adaptive | 1538524 | 1538515 99.99 1 1 4 0 6
Adaptation | 1439647 | 1439576 99.99 1 1 1.89 1 | 4.89
Afg;‘;‘:ﬁgn 1452550 | 1452502 99.99 1 1 1.36 1 | 4.36

Table 2 complements Figure 4 in which we can conclude that almost of all
quality attribute values are similar, differing just in the number of processed re-
quests and in the number of resources used. The former varies according to the
response time of the request in an inverse relation (i.e., the lower the response
time, the higher the number of requests the server can process). The latter varies
only in adaptive approaches in which they enlist and discharge servers according
to the defined quality goals. As displayed in Figure 2 of Section 4, our config-
uration requires up to seven virtual machines that can be used by the different
approaches. It is mandatory to have a Load Balancer, one Database server and
at least one (of four) active web server. In case of adaptive approaches, it is
required to have one more machine activated where Oracle process is allocated.

To achieve the goals presented above, we need 6, 4.89 and 4.36 virtual ma-
chines by Non-Adaptive, Adaptation and Improved Adaptation, respectively.
Thus, we can conclude that Improved Adaptation is the most suitable approach,
once it is be able to comply with the stated quality goals and operate using less
resources (active virtual machines).

5.2 Performance Assessment

We shall now present the resources consumed by the adaptation services and
its improvement. Then, we will perform an analysis to compare all approaches
under study.

These improvements were only possible with the insights from the detailing
profiling performed, allowing us to fix some implementation issues during the
Monitor phase which were having a negative impact on the CPU usage. Regard-
ing memory, we also found a memory leak in the Plan and Knowledge phases of
MAPE-K loop. However, this issue was located in a unaccessible block of code.
The Rainbow development team was contacted and they promptly sent us a
revised version of the library.

Table 3 supports the analysis described above and introduces some additional
information, namely the standard deviation. This parameter shows that there is
a huge oscillation of requests in the course of the running-time defined by the
workload.

The 95th percentile shows the upper value of the parameter during 95 % of
the workload. For example, the 95th percentile of CPU in Load Balancer of Non-

12 V. H. Silva, J. M. Franco, F. Correia, R. Barbosa, M. Zenha-Rela

Fig. 5. Comparing resources values between Non-adaptive and Adaptation approaches

60 320
55 300
50 280
260
45 @ 240
T 40 = 220
~ 3
s s | 2 200
S

2. ‘ S 180
@ ‘ 3 160

o 25 = 140 |

o ° ‘
3 £ 120
20 S 100

\ £ \

15 ‘ 80 ‘

1o 60 ‘

‘ 40 |
5 20
0 0

Non-Adaptive Adaptive Improved Adaptive Non-Adaptive Adaptive Improved Adaptive
 Load Balancer W Delegate = Oracle| [= Load Balancer m Delegate = Oracle|
(a) CPU (b) Memory

Table 3. Comparing resource values between Non-adaptive and Adaptation approaches

CPU (%) Memory (MB)
Average Standard 95th Average Standard 95th
verag Deviation Percentile verag Deviation Percentile
= Non-
5]
< Adaptive 40.12 18.55 83.9 57.9 12.99 62.97
5]
i
M | Adaptation 39.35 21.24 88 28.33 8.20 48.64
£ | nproved
A | Jmprove 39.57 21.15 89.4 30.25 10.57 52.22
Adaptation
‘% Adaptation 58.72 23.08 81.8 147.03 35.03 162
oD
)
S Improved
o Adaptation 1.78 2.60 4 166.14 29.96 181
% Adaptation 9.87 16.28 39.90 320.69 113.09 455
@
—
O | Improved 3.50 5.78 14 128.80 11.23 138
Adaptation

adaptive approach is 83.9 %, means that during 95 % of the workload, the CPU
usage was less than 83.9 %.

The values of 95th percentile of the Load Balancer are very similar for all
approaches. They are the maximum values as well, once they represent the high
peak phase of workload and it is in this phase that the Load Balancer has more
work to do. In the Delegate process, the Improved Adaptation scenario has the
lowest CPU usage, and a slight increase in memory consumption. Finally, our
Improved Adaptation solution presents the best results in memory usage for the
Oracle process.

Assessing the Performance Overhead of a Self-Adaptive System 13

5.3 Cost Impact

From the experimental observations presented above, using the Improved Adap-
tation system it is possible to achieve the desired quality goals with a significant
decrease in computing power. With the overhead eliminated, it is possible to
eliminate one virtual machine of the baseline configuration. According to de-
fined hardware specifications, each virtual machine contains 512 MB dedicated
of memory, and as virtual machines are replicated, we can merge the Load Bal-
ancer with the Delegate and Oracle, and therefore get in average near to 44.8 %
and 325 MB consumption of CPU and memory, respectively. Table 4 illustrates
the actual cost that each approach would involve per year in the Amazon AWS
store (as of June 2014). As a result, per year, the Adaptation solution would
represent a 18.1 % cost reduction while the Improved Adaptation would reach a
staggering 44.1 % cost reduction which is even more appellative to users of this
kind of systems.

Table 4. Cost comparison of Virtual Machines between Non-adaptive and Adaptation
approaches

Number of .
Virtual Price per
Machines | V%" (US$)
Non-adaptive 6 3698.28
Adaptation 4.9 3027.36
Improved
Adaptation 3.36 2066.4

6 Contributions

We list below the major contributions of this paper to the Self-Adaptive Com-
puting research field.

— Validate the effectiveness of Rainbow - The results presented in Section 5
allow one to conclude that Rainbow incurs low overhead in terms of CPU in
its optimized version. Thus, we validate the Cheng’s statement [4] that the
delegate process consumes in average 2% of CPU.

— Assess the overhead of the controller - In this work we intended to evaluate
the resource overhead of the controller due to the lack of research evidence
on the subject. Section 5 shows that the overhead of having a unit that man-
ages the adaptation process is low, registering an average of 3.5% of CPU
and close to 129 MB of memory.

14

V. H. Silva, J. M. Franco, F. Correia, R. Barbosa, M. Zenha-Rela

— Identify the overhead in each phase of the MAPE-K - This study provides

information about which phases of the self-adaptive loop require more focus
in future research or development effort in future releases. Prior to perform-
ing any improvements to the system, it is necessary to assess it through
extensive profiling. From our observations we could conclude that the mon-
itoring phase consumes a large fraction of resources, compared to any other
phase. This is where efforts should be put to improve the effectiveness of
self-adaptation techniques.

Comparison between non-adaptive and self-adaptive approaches - In this
study we showed that self-adaptive systems have a advantages when com-
pared to non-adaptive approaches, specially in terms of cost. In addition,
such systems require low resources and can be applied to wide variety of
scenarios.

Limitations

Monitoring can increase CPU overhead. In this case-study we monitored 4
different runtime properties (response time, throughput, successfulness of
the request and which server handled the requests). In more demanding sce-
narios with an increased number of monitored properties, the system may
experience a higher overhead of computational resources. Such analysis will
be performed in future work.

Hidden VM cost. Each machine that is activated or deactivated takes less
than 3 seconds to begin serving requests. However, in the results presented
we only consider that a machine is active if it responds to requests. Thus,
the cost of activation and deactivation (in VM-hours), representing less than
3 seconds, is hidden from those results.

Validity of the experiments. Znn.com is widely used in the self-adaptive
community as the reference scenario to perform tests and analyzes or to
propose new techniques and algorithms on such systems [4,5, 14, 15]. This
case-study includes a LAMP stack (Linux, Apache, MySQL and PHP) which
is representative of real world web systems. The Slashdot effect [13] workload
represents a real world phenomenon of a traffic flood which exercises all the
adaptation tactics present in our case-study. The workload executes for one
hour, containing periods of low, moderate and high demand, sharp peaks
as well as progressively decreasing load. A limitation of our analysis is that
it focuses on only one self-adaptive system. Analyzing other systems would
allow us to draw more general conclusions. Nevertheless, an initial exami-
nation identified high resource consumption as an issue, and after tracing
and instrumenting the system we concluded that it was due to implementa-
tion decisions rather than the self-adaptive algorithm itself. After improving
the implementation, Rainbow uses in average 1.8 % and 3.5% of CPU and

Assessing the Performance Overhead of a Self-Adaptive System 15

approximately 166 MB and 129 MB of memory in the Delegate and Oracle,
respectively. This result increases our confidence in that the self-adaptive
activities in the MAPE-K loop can be efficiently implemented without com-
promising performance.

8 Conclusions

In this paper we evaluated the performance of a self-adaptive system and iden-
tified the computational resources overhead in each of the adaptation phases.
In addition, we proposed improvements that guarantee the stated quality goals
using less resources.

In this study we evaluated a specific Self-Adaptive system (Rainbow) and
we found that in fact there was unnecessary computational overhead. After dis-
covering what phases of MAPE-K loop algorithm consumed more resources, we
optimized the Monitor, Plan and Knowledge phases. This resulted in an opti-
mized version of the self-adaptive solution, reducing cost by using less virtual
machines while maintaining the intended quality goals.

In a future work we will analyze a more complex target system and evaluate
the behavior of Rainbow in terms of its adaptation goals and computational
resources. A further step is to extend this assessment to other Self-Adaptive
systems.

Acknowledgment

This work was funded through FCT — Fundacao para a Ciéncia e a Tecnologia
in the scope of project DECAF: An Exploratory Study of Distributed Cloud
Application Failures (reference EXPL/EEI-ESS/2542/2013) and also through
the PhD research grant SFRH/BD/89702/2012. In addition, this material is
supported by the QREN “Programa Operacional Regional do Centro” under
Grant CENTRO-07-ST24-FEDER-002003, project ICIS - Intelligent Computing
in the Internet of Services.

References

1. Weyns, D., Malek, S., Andersson, J.: Forms: Unifying reference model for formal
specification of distributed self-adaptive systems. ACM Trans. Auton. Adapt. Syst.
7(1) (May 2012) 8:1-8:61

2. IBM, A.C.: An architectural blueprint for autonomic computing. IBM White
Paper (June) (2006)

3. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer 37(10)
(2004) 46-54

4. Cheng, S.W., Garlan, D., Schmerl, B.: Evaluating the effectiveness of the Rainbow
self-adaptive system. 2009 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems (2009) 132-141

16

10.

11.

12.

13.

14.

15.

V. H. Silva, J. M. Franco, F. Correia, R. Barbosa, M. Zenha-Rela

Cheng, S.W.: Rainbow: Cost-effective Software Architecture-based Self-
adaptation. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA (2008)
Salehie, M., Tahvildari, L.: Self-Adaptive Software: Landscape and Research Chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems 4(2) (2009) 1-42
Oreizy, P., Gorlick, M., Taylor, R., Heimhigner, D., Johnson, G., Medvidovic, N.,
Quilici, A., Rosenblum, D., Wolf, A.: An architecture-based approach to self-
adaptive software. IEEE Intelligent Systems 14(3) (May 1999) 54-62

Villegas, N.M., Miiller, H.a., Tamura, G., Duchien, L., Casallas, R.: A framework
for evaluating quality-driven self-adaptive software systems. Proceeding of the 6th
international symposium on Software engineering for adaptive and self-managing
systems - SEAMS ’11 1 (2011) 80

. Lemos, R., Giese, H., Muller, H.A., Shaw, M., Andersson, J., Baresi, L., Becker, B.,

Bencomo, N., Brun, Y., Cukic, B., Desmarais, R., Dustdar, S., Engels, G., Geihs,
K., M. Goeschka, K., Gorla, A., Grassi, V., Inverardi, P., Karsai, G., Kramer,
J., Litoiu, M., Lopes, A., Magee, J., Malek, S., Mankovskii, S., Mirandola, R.,
Mylopoulos, J., Nierstrasz, O., Pezze, M., Prehofe, C., Schéafer, W., Schlichting, R.,
Schmerl, B., B. Smith, D., P. Sousa, J., Tamura, G., Tahvildari, L., M. Villegas,
N., Vogel, T., Weyns, D., Wong, K., Wuttke, J.: Software Engineering for Self-
Adaptive Systems: A Second Research Roadmap. In: Software Engineering for
Self-Adaptive Systems. Volume 7475 of Dagstuhl Seminar Proceedings. Springer
(2013) 1-26

Cheng, B.H., Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker,
B., Bencomo, N., Brun, Y., Cukic, B., Marzo Serugendo, G., Dustdar, S., Finkel-
stein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J.,
Litoiu, M., Malek, S., Mirandola, R., Miiller, H.A., Park, S., Shaw, M., Tichy,
M., Tivoli, M., Weyns, D., Whittle, J.: Software engineering for self-adaptive sys-
tems: A research roadmap. In: Software Engineering for Self-Adaptive Systems.
Springer-Verlag, Berlin, Heidelberg (2009) 1-26

Halili, E.: Apache JMeter. Packt Publishing (2008)

Hunt, C., John, B.: Java Performance. 1st edn. Prentice Hall Press, Upper Saddle
River, NJ, USA (2011)

Slashdotting of mjuric/universe. http://web.archive.org/web/20090227001212/
http://www.astro.princeton.edu/~mjuric/universe/slashdotting/ (January
2004)

Camara, J., De Lemos, R.: Evaluation of resilience in self-adaptive systems us-
ing probabilistic model-checking. In: Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), 2012 ICSE Workshop on. (June 2012) 53-62
Casanova, P., Garlan, D., Schmerl, B., Abreu, R.: Diagnosing architectural run-
time failures. In: Proceedings of the 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. SEAMS ’13, Piscataway,
NJ, USA, IEEE Press (2013) 103-112

http://web.archive.org/web/20090227001212/http://www.astro.princeton.edu/~mjuric/universe/slashdotting/
http://web.archive.org/web/20090227001212/http://www.astro.princeton.edu/~mjuric/universe/slashdotting/

	Assessing the Performance Overhead of a Self-Adaptive System
	Introduction
	Related Work
	Methodology
	Jmeter
	Scripts
	NetBeans Profiler
	Analysis of Performance Metrics

	Case-study
	Self-Adaptive System
	Target System
	Adaptation Goals
	Adaptation Tactics
	Workload

	Evaluation
	Analysis of Quality Attributes
	Performance Assessment
	Cost Impact

	Contributions
	Limitations
	Conclusions

