
CloudBFT: Elastic Byzantine Fault Tolerance

Rodrigo Nogueira, Filipe Araujo, and Raul Barbosa
Faculty of Sciences and Technology

University of Coimbra
3030-290 Coimbra, Portugal

Email: {ran, filipius, rbarbosa}@dei.uc.pt

Abstract—Cloud computing is increasingly important, with the

industry moving towards outsourcing computational resources

as a means to reduce investment and management costs, while

improving security, dependability and performance. Cloud oper-

ators use multi-tenancy, by grouping virtual machines (VMs) into

a few physical machines (PMs), to pool computing resources, thus

offering elasticity to clients. Although cloud-based fault tolerance

schemes impose communication and synchronization overheads,

the cloud offers excellent facilities for critical applications, as it

can host varying numbers of replicas in independent resources.

Given these contradictory forces, determining whether the cloud

can host elastic critical services is a major research question.

We address this challenge from the perspective of a standard

three-tiered system with relational data. We propose to tolerate

Byzantine faults using groups of replicas placed on distinct

physical machines, as a means to avoid exposing applications

to correlated failures. To improve the scalability of our system,

we divide data to enable parallel accesses. Using a realistic setup,

this setting can reach speedups largely exceeding the number

of partitions. Even for a wide variation of the load, the system

preserves latency and throughput within reasonable bounds. We

believe that the elasticity we observe demonstrates the feasibility

of tolerating Byzantine faults in a cloud-based server using a

relational database.

Keywords—Distributed systems, fault-tolerant algorithms,

Byzantine faults, security, dependability.

I. INTRODUCTION

When compared with traditional in-house solutions, clouds
offer simplicity, security, dependability and performance at
very competitive costs. Indeed, the economies of scale and
a large customer base enable cloud providers to acquire and
manage large server farms and to accommodate demand peaks.
However, this model only works if clients run algorithms that
scale, by using more resources under heavier loads and fewer
resources otherwise. This has motivated many cloud providers
to encourage, through pricing, the use of their non-relational
data stores, to enable parallel, unsynchronized accesses.

Unfortunately, these models do not provide all the ACID
properties of typical relational databases (Atomicity, Consis-
tency, Isolation and Durability). In fact, relational databases
provide a much more powerful model with a large exist-
ing software base, finely optimized and deeply understood
by programmers. However, using relational databases in a
Byzantine fault-tolerant (BFT) algorithm is expensive due to
the synchronization needed for replicas and databases. Some
researchers argue that the subtleties of replication collide
with elasticity, a driving force of the cloud [1]. Here, we
experimentally evaluate the opposite point of view. We create
a straightforward web server architecture, called “CloudBFT”,

to evaluate the feasibility of a cloud-based Byzantine fault-
tolerant architecture.

Consistency and isolation (the ‘C’ and ‘I’ in ACID) are
particularly difficult to obtain in replicated databases. The
same pair of database operations arriving in different orders
at the replicas may result in different views for each operation
and will eventually cause inconsistencies as data starts to
diverge. Solving this issue in the relational model is not easy,
because tables have foreign keys referring to other tables,
thus making independent accesses very difficult to achieve.
Locking can help here, but fine-grained locks involve low-
level programming, because SQL expressions are dealt with
by the database, whereas coarse-grained locks, controlled by
the middleware, may impair performance, if they are not well
done.

Properly isolating resources in the cloud is also a relevant
problem. Currently, cloud providers try to concentrate their
clients as much as possible, depending on the resources they
need, on the internal traffic they generate, or even on the
programs they run, to save memory [2], [3], [4], [5]. Despite
bringing economical benefits, consolidation affects current
fault-tolerant techniques, because these assume independent
failures. If redundant processes share the same hardware, they
become much more exposed to simultaneous hazards. For
this reason, in our solution, we need to ensure the dispersion
of replicas by different servers, availability zones, or regions
according to the services supported by the cloud provider(s),
and, at the same time, promote the consolidation of resources
that may run together to control costs.

To keep our approach simple, we resort to well-established
practices: a three-tier architecture, with presentation, business
and data layers. We need triple replication for BFT and we
divide the data for scalability. In our experiments we use the
OLTP TPC-C benchmark [6] and partition the data based on
the warehouses. This benchmark provides a realistic setting for
an online shop, with more clients requiring more warehouses.
Since only a small fraction of the operations access more than
one warehouse, in most cases (the remaining) we can access
warehouses in parallel. To ensure isolation and consistency, we
use coarse-grained locks.

To achieve Byzantine fault-tolerance we use the MinBFT
algorithm [7]. A distinctive feature of this algorithm is a
tamper-proof Trusted Platform Module (TPM) to sign and
verify messages. This TPM only signs the same message once,
thus preventing attackers from sending different versions of
the same message to different receivers. This property enables
MinBFT to tolerate a fixed number f of Byzantine failures,
with only 2f+1 replicas, instead of 3f+1. Existing technology



enables multiple VMs to share a single TPM [8], thus opening
TPM services to the cloud datacenter.

To deal with the different partitions (warehouses in TPC-
C), we create groups of 2f + 1 VMs (replicas) running
on different facilities (different servers, availability zones or
regions). This ensures that the service tolerates up to f physical
or virtual machine failures. Under light load, one group of
VMs may respond to requests involving more than one of
the partitions. As the system load increases, the number of
partitions per group decreases down to the minimum of 1.
The limit for scalability comes precisely from the number of
partitions, which, in turn, is bound by the granularity with
which we can divide the data.

To make this architecture cost-friendly, we allow the groups
to run in the smallest possible number of physical machines,
2f+1, plus another machine that serves to order requests, for a
total of 2f+2. As the number of clients grows, we increase the
number of groups (or VMs), and take the opposite movement
when the number of clients shrinks. This ensures elasticity.

Our main contributions are therefore a BFT architecture
that is able to scale with respect to the number of VM
groups, thus exploiting the elasticity of the cloud. Virtual
machines belonging to the same group are placed on distinct
physical machines, to avoid common faults, and the relational
data model is supported by locking the database whenever
necessary, in order to ensure totally ordered execution of
requests.

Resorting to a simple analysis we demonstrate the feasi-
bility of the CloudBFT architecture, by observing that large
speedups are achievable even with only a few partitions. Our
experimental results support this analysis, showing response
times below 1 second for 95% of the queries, and excel-
lent scalability of CloudBFT up to 5 groups. Furthermore,
increasing the number of the server groups yields a significant
improvement of throughput and latency. In our experiments,
we observed that for up to 1 000 transactions per minute,
adding more groups to a saturated server always resulted in
a considerable increase in the capacity of response and on a
reduction in the response times observed by the clients. These
results support the feasibility of running critical fault-tolerant
servers backed by a traditional OLTP database in the cloud.

We organized the remainder of the paper as follows. In
Section II we review the related work. In Section III we present
our assumptions. In Section IV we describe the CloudBFT
architecture. In Section V we show and discuss the results. In
Section VI we conclude the paper.

II. RELATED WORK

Software and hardware faults, as well as malicious attacks,
are a challenge for online services, as faulty nodes may
deviate from the intended behavior. To tolerate such faulty
behavior, one may use state machine replication [9] and allow
some replicas to fail while the correct ones ensure that the
system as a whole provides correct service to its users. One
main concern in a cloud infrastructure is that virtual machine
placement is either achieved through bin packing (aiming at
maximizing the usage of each physical machine) or through
placement algorithms that aim to consolidate virtual machines

that co-operate. In both cases, if a group of virtual machines
co-operates to provide fault-tolerance, the entire group may
be placed on a single physical machine. This creates the
possibility for common-mode failures, whereby a single fault
could bring down more than f replicas [10], [11].

To avoid common-mode failures, major cloud providers
like Microsoft Azure [12] and Amazon Elastic Compute
Cloud [13] offer a hierarchy of fault-containment solutions:
multi-server, multi-availability zones (AZ) and multi-region.
Availability zones share a fast, low latency network, but
have separate machines and power sources, whereas regions
typically have a significant geographic separation. These forms
of separation enable clients to set up disaster recovery or
high availability (HA) architectures, with different levels of
tolerance and costs. Furthermore, availability zones make it
possible to prevent physical co-location. Although this is in-
sufficient to tolerate Byzantine faults, it supports our approach,
by providing control over physical replica placement.

Nevertheless, most research concerning virtual machine
placement addresses the challenge of improving performance
rather than dependability or security. Many approaches explore
affinity among virtual machines and postulate that virtual
machines that communicate with each other should be placed
together [2], [3]. Some authors propose to place together
virtual machines with a high degree of page sharing [4] or
with memory pages that have exactly the same content [5].
Although these approaches improve application performance,
we need to consider the risk of correlated faults, as different
replicas running the same algorithm are likely to be placed
together. In our system, we try to balance performance and
fault tolerance, by joining components that can fail together
and separating others.

In the most extreme cases, online services might be ex-
posed to faults that cause nodes to exhibit Byzantine behav-
ior [14]. Such faults may cause a node to behave arbitrarily, and
require Byzantine fault-tolerant algorithms, to ensure that the
remaining replicas are able to cope with erroneous behavior of
the affected nodes. Some approaches introduce Byzantine fault
tolerance to state machine replication [15], whereas numerous
solutions aim to provide Byzantine fault tolerance to systems
in general [16], [15], [17]. Byzantine fault-tolerant protocols
resist to f faulty servers with 3f + 1 replicas.

Agreement-based protocols grew in popularity after the
Practical Byzantine Fault Tolerance algorithm [15]. In quorum-
based protocols, clients must ensure that two different requests
(read or write for example) overlap in at least one server,
despite of up to f failures. Under low contention, these
algorithms tend to be more efficient, because they skip the
quadratic costs of agreement [18], [19]. Zyzzyva [16] tries
to avoid this cost, by letting servers speculatively execute
commands and postponing commit. A promising path that we
explore relies on a Trusted Platform Module (TPM) to sign
messages, thus requiring only 2f + 1 replicas to tolerate f

Byzantine faults [20]. This cost is comparable to cloud-based
HA solutions, as supported by the providers. We can say
the same about communication costs, because HA solutions
may involve heavy synchronization throughout different AZ
or regions.

Given that we target relational databases, one of the key



decisions in our architecture is how we replicate the database.
This is a deeply studied topic, including for BFT purposes [21],
[22], [23]. Replication mechanisms might be single or multi-
master. In the single-master case, the master receives all the
updates, whereas the slaves serve either for read purposes or
for backup alone, e.g., in primary-backup settings for disaster
recovery. In multi-master replication, all the replicas may
accept updates. This is the case of the HA settings we see
in clouds. Independently from the number of masters, replicas
might receive updates either synchronously or asynchronously.
In the synchronous case, the updates must reach all the nodes
before any further operations (e.g., reads), to ensure ACID
properties [24], [25]. This model is difficult to implement,
because commit of write operations must follow the same order
in all the replicas. In the asynchronous case, distribution of the
updates might be lazy, and take some time [26]. As a result,
applications may be able to observe inconsistent data. On the
positive side, the performance penalty of write operations is
typically smaller. In this paper, we implement a simple multi-
master approach with synchronous updates. However, to enable
parallelism and ensure efficiency, we use a logical division of
the data by warehouses.

To prevent common-mode failures, we create groups of
virtual machines running on different servers, AZ or even
regions. Each group responds to a client request in order
to guarantee Byzantine fault tolerance. Given that one major
advantage of using cloud computing is the elasticity provided
by the infrastructure, we design our approach to provide
Byzantine fault tolerance without compromising the elasticity.
To achieve this, the number of groups responding to client
requests may vary according to the load. Our approach is
compatible with the relational data model. Although non-
relational storage is becoming popular [27] we believe that
security requirements are compatible with the relational model.
In other words, our approach does not limit the elasticity of a
system, allowing the number of Byzantine fault-tolerant groups
to grow according to the load on the system. Furthermore, the
resulting performance is close to the theoretical limit imposed
by conflicting queries in a relational database.

III. SYSTEM MODEL

We assume a Byzantine failure model, where faulty nodes
or clients may deviate arbitrarily from the correct state. Clients
or nodes that deviate from the correct state are said to be faulty.
We use a Byzantine fault-tolerant algorithm to ensure that even
in the presence of faulty nodes, the majority of the system can
process a client’s request correctly, and reply with the correct
response. We use MinBFT [7] as the BFT algorithm, because
it needs only 2f + 1 replicated nodes to tolerate f failures.

We assume strong adversaries that can delay communi-
cation, attack and take control of any node of the cluster.
However, adversaries cannot forge cryptographic operations
done by the tamperproof component, such as collision-resistant
hashes, encryption and digital signatures. Servers and clients
must know the private keys necessary to encrypt and sign
the messages, in order to ensure authenticity, integrity, non-
repudiation and confidentiality.

We assume an asynchronous network that can fail to deliver
messages, duplicate them or deliver them out of order. Like

Database #1

Physical Machine#0

PARTITION#1
Voting 
System PARTITION#2

PARTITION#3

Primary

Group#1

Group#2

Group#3

BFT plugin

Client Physical Machine#1

VM#1

VM#2

VM#3

Physical Machine#2

VM#1

VM#2

VM#3

Physical Machine#3

VM#1

VM#2

VM#3

Database #2

PARTITION#1
Voting 
System PARTITION#2

PARTITION#3

Database #3

PARTITION#1
Voting 
System PARTITION#2

PARTITION#3

Group Color:

Fig. 1. System architecture.

MinBFT and PBFT, we do not make any assumptions related
to liveness, but the network and the internal system must
eventually process or send the messages. Furthermore, we
assume that faults are independent, i.e., there is no correlation
between two failures or the least possible correlation practi-
cally achievable. This may be achieved by introducing diversity
in the cluster, for example, through the utilization of distinct
operating systems, distinct source code, different versions of
the programming language used, etc.

Although we use MinBFT as the algorithm to tolerate
Byzantine faults, any Byzantine fault tolerant algorithm with
some changes, such as PBFT [15] or Zyzzyva [16], is suitable
for our system. Thus, our approach may be generally applica-
ble to any Byzantine algorithm.

Since our design is specifically intended for cloud envi-
ronments, we stipulate that the nodes (VMs) that execute the
algorithm must be distributed across 2f + 1 distinct physical
machines (in a multi-server or multi-AZ configuration, for
example). Thus, if a physical machine fails due to a hardware
fault or if multiple VMs are affected by a cross-VM attack,
failures will not compromise the majority of the system. In the
following section we describe how to achieve this distribution
of VMs across physical machines.

IV. CLOUDBFT

A. Client

Our system model consists of clients accessing an appli-
cation deployed in the cloud. The application servers that
receive and reply to client requests are VMs hosted by a
cloud provider. We create groups of VMs such that a separate
physical machine (PM) is used for each VM. Virtual machines
belonging to distinct groups may share the same PM, as these
are never responsible for responding to the same request. We
split the application data into separate partitions and associate
the VM groups to the different partitions, such that one group



Server 0
(Primary)

Server 1(G1)

Server 2(G1)

Server 3(G1)

Client

request prepare commit commit-db

DBnode 1

DBnode 2

DBnode 3

reply-commit-db reply

Server 5(G2)

Server 6(G2)

Server 7(G2)

Fig. 2. Normal case execution with 2 groups of size 2f + 1.

may serve one or more partitions, but a partition is never served
by more than one group.

We assume that the application has numerous VMs (some
of which may execute non-critical functions) and that some of
them will be placed in 2f + 1 distinct PMs. This might be
ensured through some multi-server or multi-zone agreement
with the cloud provider. By using tamper-proof hardware that
must be available at each physical node, we are able to identify
which VMs are running on which PMs, and create adequate
groups using this information. The following subsections de-
scribe the protocol in detail.

A client sends requests to the cluster and waits for the
resulting response. In our implementation, communication
goes through a web service accessible with a special Web
browser plugin (see Figure 1). The plugin is a key component,
because clients are unable to use the BFT algorithm without
it. It manages all clients’ requests, ensuring that every request
is executed by at least 2f + 1 distinct PMs.

When the client submits a request through the browser,
the BFT plugin dispatches it to all elements of the cluster
(see Figure 2). All messages sent by the client are signed and
encrypted with an a priori chosen private key. The BFT plugin
will wait for f+1 equal responses from the cluster in order to
guarantee that the client’s request was executed with byzantine
fault tolerance.

B. Primary

The primary node orchestrates the execution of the BFT
algorithm and distributes the work to the groups. After re-
ceiving a REQUEST message from a client, it verifies the
message integrity and validity. Then, the primary generates a
PREPARE message and sends it to the tamper-proof device
(as we describe ahead, one such device must be attached to
each PM). This device adds a monotonic counter and signs
the resulting message, thus preventing the primary from ever
sending different versions of the same request.

The primary node selects the Byzantine fault-tolerant group
that should process each request, based on the contents of the

REQUEST message. The client messages convey information
on which partition they refer to (possibly more than one), thus
allowing the primary to choose the appropriate group.

Although we assume the general relational data model,
data is divided into partitions to enable the system to scale
by using parallel execution of BFT groups. As we shall see in
the results section, the TPC-C benchmark allows the database
to be partitioned, by assigning one group to each warehouse.
Requests that require more than one warehouse are handled
by serializing all database accesses.

Therefore, the primary node needs to analyze the content of
each request to determine which group will process it. Unlike
existing approaches, in our design, the primary node does not
process any message or response, and is therefore only respon-
sible for ordering requests and sending the signed PREPARE
message (see Figure 2). The primary node guarantees totally
ordered execution by appending a monotonically increasing
counter to all PREPARE messages. One disadvantage is that
we need a primary node in addition to all worker VMs,
although one primary node co-ordinates multiple groups.

Reducing the load of the primary node is crucial for
achieving good system performance. In a realistic scenario,
where the system must process a large number of requests, the
primary would quickly become the bottleneck if, in addition to
signing/ordering messages and issuing PREPARE commands,
it would process requests. As the load increases, the system
adds more groups and the primary node balances the load.

Since one of our design decisions is to distrust the hy-
pervisors, the primary node must not share the PM with any
VM belonging to the groups, i.e., the primary and the groups
must be distributed across at least 2f + 2 PMs. Although this
requires one additional PM, the cost of the primary becomes
less significant as the load increases and the system scales to
a larger size.

As soon as the group nodes receive the REQUEST message
from a client, these start a timer to detect if the primary is
faulty. If the timer expires, because nodes did not get the
PREPARE message within the maximum allowable time, they



start a view-change operation to elect a new primary. To inform
other nodes that it is alive, the primary sends the PREPARE
message to all nodes in the cluster, thus canceling their timers
accordingly (see Figure 2). A view change is triggered only if
the timers of f + 1 nodes of the same group expire.

C. Groups

The groups are responsible for processing the COMMIT
message and for ensuring that the operation is persisted suc-
cessfully on the database nodes. After receiving the PREPARE
message from the primary, the group nodes check if they
are responsible for processing the PREPARE message. Since
only one group can process a PREPARE message, the others
which were not assigned by the primary to process it, will
cancel their timers and discard the message (see Figure 2).
The chosen group will check the validity and integrity of the
PREPARE message by calling a specific function on the TPM
for this purpose. If this validation succeeds, the node creates a
COMMIT message with a monotonic counter associated. The
TPM generates the counter and signs the COMMIT message,
ensuring that only another TPM with the same private key will
be able to verify successfully the COMMIT message.

As soon as the COMMIT message is created by a group
node, it is sent to all others peer nodes of the same group
(see Figure 2). The group node will wait for f + 1 matching
COMMIT messages. Each COMMIT message is also veri-
fied in the TPM. After receiving f + 1 matching COMMIT
messages, the group member accepts the state and persists it
into durable storage. It then creates and sends a COMMIT-DB
to all 2f + 1 databases nodes. The COMMIT-DB message
contains the operation decided by the group and the order
identifier. Each group node signs and encrypts the COMMIT-
DB message with an already known key, shared between the
database and the group nodes. Each group node needs to wait
for f + 1 matching REPLY-COMMIT-DB messages from the
database nodes, guaranteeing the proper processing, even if f
database nodes fail. Otherwise, it would not be able to tolerate
Byzantine faults in the database nodes and consequently the
entire system would be compromised.

Finally, each group node generates the webpage which
contains the database response, and then sends it to the client.
The page generation could be a heavy stage throughout the
system’s pipeline, since it needs to parse the database response,
generates all data necessary to display the information effec-
tively, such as, HTML, CSS, JavaScript, etc.

Each group has at least one partition associated and most
of the time this group is only responsible for executing
transactions on this partition (see Figure 1). However, when
a transaction needs to access data stored in multiple partitions,
a foreign group can access them. As the load increases, the
system takes on more groups up to the number of partitions,
thus enhancing the computational power and dividing the load
across more nodes. The opposite move occurs when the system
responds to a lighter load by reducing the size of the cluster.
Thus, the system explores the elasticity available in cloud
environments, either in response to heavier demands or to save
costs during slower periods.

Figure 3 depicts two requests executing in parallel. Two
distinct clients send a request to the cluster at the same time.

Upon receiving the requests, the primary creates and sends
the PREPARE messages (P#1 and P#2) to the groups, in a
serial way. After receiving the PREPARE message from the
primary, each group starts the COMMIT step. The two groups
process the COMMIT messages (C#1 and C#2) in parallel. The
database nodes process the COMMIT-DB messages received
from the two groups in parallel, since in this example these
messages access two distinct partitions. Finally, each group
creates the REPLY message in order to fulfil the clients’
requests. As the figure shows, different groups can also run
this step in parallel.

Server 0
(Primary)

Group#1

Group#2

DB nodes

Client#2

Client#1

R#2

R#1

C#2

P#1 P#2

C#1

C-DB#1

C-DB#2

REPLY#1

REPLY#2

Fig. 3. System architecture.

D. Database nodes

The database nodes are also replicated to ensure the correct
operation of the system, even in the presence of faults. To
tolerate up to f Byzantine faults, even if hypervisors are not
trustworthy, the database nodes must be replicated by 2f + 1
different PMs. To ensure the generality of our system, we
do not depart from the relational data model. However, to
explore parallelism, we need to split the database into different
partitions. A good separation of the database schema may
enable different transactions to simultaneously access different
partitions, thus being decisive to reduce the contention on the
database nodes.

Since the database nodes are physically disconnected from
the processing groups, it is vital to ensure that the transactions
executed on these nodes were really decided by the groups. The
database nodes receive a COMMIT-DB message from the each
group node. This message is signed and encrypted by the group
node and sent to the database nodes. Although this security
mechanism ensures integrity, authenticity, non-repudiation and
confidentiality, the database nodes must be sure about which
was the correct transaction decided by the group nodes. To
circumvent this, every database node must have a voting
system for ensuring that only transactions decided by at least
f + 1 group nodes will be able to execute.

As the database nodes are partitioned, we have to consider
two types of transactions: single partition and multiple parti-
tion. The former type of transactions only access one partition
during the execution, whereas the latter need access to multiple
partitions. Distinct single partition transactions can execute
in parallel, because they will not conflict with one another.
However, when a multiple partition transaction executes, the
voting system (see Figure 1) locks all the database partitions
and executes the SQL queries alone in order to guarantee data
consistency. One group is associated to at least one database
partition. Only that group can execute disjoint transactions



(single partition transaction) on that partition. However, a
group can execute transactions on several partitions when the
operation is not disjoint, requiring access to multiple partitions.

E. Tamper-proof hardware

The purpose of the TPM is to reduce the number of total
nodes from 3f + 1 to 2f + 1. The TPM is considered as a
tamper-proof component, and therefore, in no scenario could
an attacker forge any message signed by the TPM. To reduce
the cluster size, in each message produced by the TPM, a
monotonic counter is concatenated to the message. As the TPM
is a tamper proof component and only the cluster’s TPMs know
the private key, the signatures ensure that the messages were
surely created by the TPM. Furthermore, only another TPM
which has the private key will be able to verify the message.

Our system is designed for cloud environments and con-
sequently it is likely multi-tenant, hosting multiple VMs in
the same PM. Since we assume that only one TPM will exist
per PM, the same TPM must be able to sign and verify
operations from distinct group nodes residing in the same PM.
Therefore, the TPM must have as many counters as the number
of groups in the cluster. Otherwise, the counter sequentiality
would be broken, because distinct VMs would increment the
same counter. Thus, each group node uses its own counter,
thereby guaranteeing proper operation of the system even in a
multi-tenant cloud environment.

Each TPM must have a public identifier, known by the
other TPMs of the cluster. This identifier enables the nodes
running the algorithm to unambiguously determine the source
PM of each signed message. Ensuring that messages come
from the appropriate process is a more complex problem, but
we rely on the same properties and have similar weaknesses
as the MinBFT [7] algorithm, concerning access rights to the
TPM. In the extreme case where a single process reached the
TPM and impersonated nodes from other groups (thus VMs),
we would still have a single Byzantine failure, from the point
of view of the 2f + 1 relation, as different groups respond to
different queries and each group could still conserve a majority
of sane nodes. The TPM must provide two functions:

• createUW(m) - This function returns a valid unique
warrant with a monotonic counter and a TPM iden-
tifier concatenated to the message. The monotonic
counter ensures the exactly-once and therefore the
total order execution. The TPM identifier authenticates
the PM creating the warrant.

• verifyUW(PK,UW,TPM

id

,m) - This function verifies
the validity of the UW certificate previously crated by
other TPM. The TPM generates a UW according to the
encryption used (RSA [28] or HMAC [29]) by using
the private key, PK, the TPM

id

and the message m.
If the UW is equal to the one produced in the TPM,
true is returned. Otherwise, the TPM returns false.

Figure 4 depicts the keys used in the system. TPMs must
share the same key and all group nodes must have two keys
to communicate securely with the client as well as with the
database nodes. A session key is enough for guaranteeing a
robust communication between client and cluster nodes, but
an asymmetric key would be even more robust.

VM#3

VM#2

VM#1

Physical Machine#0
VM#0

Database #1

Client

Physical Machine#1
TPM
K#1

SK#2

SK#2 K#3K#3

TPM
K#1SK#2

Physical Machine#2
TPM

SK#2 K#3

Physical Machine#3
TPM

SK#2 K#3

K#1

K#1

Database #2

K#3

Database #3

K#3

Fig. 4. Keys used in the system.

F. Messages exchanged

To tolerate Byzantine faults in cloud environments, we
modify the typical steps made by Byzantine fault-tolerant
algorithms, and consequently the content of the messages
exchanged during their execution. Almost all messages carry
additional information, necessary to ensure proper operation of
the system even in a virtualized environment, where one can
trust, neither the hypervisor, nor the cloud provider. Before
listing these operations, we enumerate their parameters in
Table I.

TABLE I. OPERATION LABELS AND THEIR RESPECTIVE MEANINGS.

Label Meaning
c Client ID
op Operation requested by client
t Timestamp associated to a client request
p

id

Primary ID
v Current view
g

exec

Group designated by the primary to process the client request
m Message containing the client request
S

p

id

TPM sign operation called by the primary
ge

i

, ge
j

Group node i and j

S

ge

i

, S
ge

j

TPM sign operation called by the server i and j

o order id determined by the primary
res response resulted by the execution of client request

• hREQUEST, c, op, ti
�

c

— The REQUEST message is
sent by the client to all nodes of the cluster, requesting
an operation execution. The message must contain
the client identifier, the operation to execute and a
timestamp.

• hPREPARE, p
id

, v, g

exec

,m, UW

p

id

i — The PRE-
PARE message is sent by the primary to all nodes.
The message contains the primary identifier, the view
number, the identifier of the group which will process
the message, the message containing the client request
and the unique warrant (UW) created by the TPM.



• hCOMMIT, ge
i

, ge

j

, v,m,UW

p

id

, UW

ge

i

i — The
COMMIT message is broadcast from all elements of
a group to all elements of the same group. It must
contain the sender (ge

i

), the receiver (ge
j

), the current
view, the message containing the client request, as well
as the UW generated by the primary and by the sender.

• hCOMMIT-DB, op, oi
�

db

k

— The COMMIT-DB is
sent by group nodes to execute operations on database
nodes. The message must contain the operations and
the order identifier generated by the primary.

• hREPLY-COMMIT-DB, resi
�

ge

i

— The REPLY-
COMMIT-DB is sent by the database nodes in reply to
the COMMIT-DB message. The message must contain
the result of executing the transaction.

• hREPLY, ge

i

, t, resi
�

ge

i

— The REPLY message is
sent by the the group nodes that processed the request.
Therefore, it must contain the sender identifier, the
response content and the timestamp sent by the client
in the REQUEST message.

V. EXPERIMENTAL EVALUATION

To measure the scalability of our system we resorted
to experimental evaluation. The CloudBFT clients run in a
loop requesting a web page, waiting for the reply and then
requesting another page. For each request, the server submits
a TPC-C transaction to the database. Upon response from the
database, the server generates a web page and replies back.
In this setup, TPC-C terminals are replaced by CloudBFT
clients sending requests to the cluster. We simulate the page
generation step with a sleeping period of 200ms, since we are
not evaluating the client side page rendering. The server must
also perform a number of additional operations, like voting,
signing and verifying messages using the TPM.

We implemented the CloudBFT system in Java and ran it
on a private cluster, under different loads and with varying
numbers of VMs. Our cluster runs five Dell PowerEdge R620
rack servers with 4 CPUs and 32 cores, served by a bare
metal Xen Hypervisor to support virtualization. The particular
configuration of this cluster ensures a strong isolation of the
VMs, but gives us little control on the CPU core they use.
Thus, there is no physical resource pooling and consequently
the system performance is not compromised. Each replica of
the group is a single-core Intel Xeon E5405 VM, running at
2.00 GHz , with 1 GB RAM and hosting a Linux 2.6.32 OS.

To enable multiple VMs to access the (single) TPM of
their PM, we used a virtualization approach based on TCP
sockets. This virtualization scheme accepts requests to sign
and verify messages, as we referred in Section IV. The TPM
keeps separate monotonic counters for the local VMs, to ensure
the sequentiality of these counters for the different VMs. In
the verify operation, the TPM compares the expected output
against the received data.

To ensure BFT execution of the requests we implemented
the BFT plugin using a Java Servlet. This servlet is responsible
for handling the clients’ requests and dispatching them to all
elements of the cluster. Then, it waits for f + 1 matching
responses from the cluster, before displaying the webpage. The
authenticity, integrity, non-repudiation and confidentiality is

guaranteed through the utilization of private-public key digital
signature and symmetric encryption.

The data tier is composed of 2f + 1 replicated databases
in distinct PMs. We used the MySQL 5.6.17 database man-
agement system and the TPC-C as the database schema. The
voting system was implemented in Java using the concurrent
standard java library to improve performance. The communi-
cation with the voting system of the database nodes is done
through TPC sockets and all messages are encrypted and
digitally signed.

A. Throughput

Since our main goal was to build a scalable BFT system
for the cloud, capable of responding to increasing loads, we
measure the throughput and the latency it obtains against
simpler systems and against the theoretical limits. To measure
the throughput of CloudBFT, we start by comparing it against
a non-replicated non-BFT approach, where each request is
processed by a single VM, unlike our own solution, where
each request is processed by a group of VMs. In the non-
replicated implementation, we varied the number of VMs
from 1 to 5. Each of these VMs replies to a different client.
Since CloudBFT requires 3 VMs per client, a fair comparison
requires 15 VMs, to achieve a comparable number of 5
groups. Figure 5 shows the throughput of the non-replicated
solution in grey (the x-axis is the number of VMs) and the
throughput of CloudBFT in black (the x-axis is the number
of groups), for a system with 15 clients. Since we have 5
partitions (warehouses), the maximum number of partitions
per computing group decreases from 5 to 3, 2, 2 and finally 1
partition per group, respectively, for 1, 2, 3, 4 and 5 groups.

0
25

0
50

0
75

0
10

00
12

50

1 2 3 4 5

Number of VMs/Groups

Tr
an

sa
ct

io
ns

/M
in

ut
e

Execution Type
Groups
VMs (Unreplicated)

Fig. 5. Throughput with Byzantine fault-tolerant groups vs. an unreplicated
system.

In these measurements, we can observe that the overhead
of our approach ranges between 4%, with 1 group, and 16%,
with 5 groups, when compared to 1 VM and 5 VMs of the
non-replicated system. The main reasons for this overhead are
the additional work performed by all nodes to sign messages,
and the way database accesses are performed.

Regarding the work performed when signing messages, the
primary node signs each message using the TPM. Each other
node must also sign all messages using its local TPM. The



primary therefore signs one request at a time. The other nodes
are placed in PMs that contain only one TPM. Since different
groups may use the same PMs, there is also contention in the
local TPM, whenever nodes from different groups simultane-
ously access this resource.

Regarding the database accesses, CloudBFT locks the en-
tire database externally for requests that must access more than
one partition. In the TPC-C benchmark, 10% of the requests
are randomly associated to a foreign warehouse, thereby cre-
ating write/write conflicts. The non-replicated solution, on the
other hand, solves all such conflicts internally using standard
transactional isolation. Consequently, the overhead in solving
such conflicts is also showing up in the figure.

The relative throughput is also affected by the fact that,
at all stages, a BFT group must wait for the slowest node.
Since there are normal variations in the response time of each
machine, systematically waiting for the slowest node bears an
impact on the overhead of our approach.

We measured the amount of time spent at each request
processing stage by a group of VMs. Figure 6 shows the time
spent by one group of VMs processing requests from a single
client. We can observe that generating the HTML of the page
is the longest stage, taking about 200ms. The message signing
and verification stages take, combined, 115ms, and database
access takes 71ms.

0

50

100

150

200

DB Access Page Generation TPM Sign Group TPM Sign Primary TPM Verify

Operation

Ti
m

e 
(m

s)

Fig. 6. Time spent at each stage of the BFT pipeline.

Although the HTML page generation stage is the longest,
it may be parallelized by adding more groups. Hence, the
throughput may be scaled as the number of clients increases,
by generating the HTML in parallel groups.

Regarding the load imposed on the primary node, we can
observe in Figure 6 that the TPM signature takes 50ms. This
means that the system is limited to a maximum throughput
of 1200 transactions per minute. In order to improve this
limit, one may use faster tamper-proof hardware or introduce
additional modules to sign messages in parallel.

B. Scalability

To evaluate the speedup of our system, we can consider
each operation, like signing or verifying a signature, to be a
pipeline stage. Then, we consider two distinct cases in the
TPC-C benchmark: one out of ten transactions requires a
foreign warehouse and the database access must be serialized;
the remaining nine out of ten transactions require only the local
warehouse and may therefore run in parallel.

In the case of parallelizable requests, only the TPM signa-
ture done by the primary is serial, but since the primary could
withstand up to 1200 transactions per minute, this effect is not
present in these experiments. Hence the speedup bound for
nine out of ten transactions should be approximately linear.

In the case of transactions that require foreign warehouses,
each group must access more than one partition and, in our
approach, the database is locked to serve such transactions.
In Figure 6 we can observe that the total time to reply to
a request, with one client and one group, is 389ms. Of this
time, the 71ms corresponding to the database access is the
largest time entirely serialized. Therefore, up to the limit of
n = b389/71c = 5, we could consider the same coarse-
grained linear bound. The overall speedup bound is therefore
also linear, i.e., S(n) = n, being n the number of processes.

1
2

3
4

5

1 2 3 4 5

Number of Groups

To
ta

l S
pe

ed
up

Linear Speedup

Measured Speedup

Fig. 7. Total speedup (measured) vs. maximum theoretical speedup.

Figure 7 compares the maximum theoretical speedup with
the actual speedup, measured with up to 5 groups, using 15
clients. One may observe that our implementation reaches a
speedup close to the theoretical maximum. Hence, up to the
number of data partitions, the implementation can be said to
scale within the limits imposed by the TPC-C benchmark itself.
Multiple reasons concur to prevent real solutions from reaching
a linear speedup. For example, depending on the load and the
number of groups, replicas spend between 2 and 5% of the time
waiting on the global lock protecting multi-partition accesses.

It is worthwhile computing the maximum speedup that
could ever be achieved as n ! 1. To perform this com-
putation, we assume that 10 serial transactions occur in the
beginning and 90 in the end, according to the percentages
defined by TPC-C. In steady state, a pipeline where the slowest
stage takes 71ms, can output the 10 requests that occur serially
in 10⇥71 = 710ms at least, whereas for 5 partitions, we have
the other 90 results in 90/5 ⇥ 71 = 1278ms, at least. The
system would, therefore, take 710 + 1278 = 1988ms for 100
requests. If we compare this to the serial time, which would be
100⇥ 389 = 38900ms, the maximum speedup we could ever
achieve is given by Equation 1. Although this value depends
on the time spent in other stages, we can, nevertheless, expect
large speedups, quite in excess of the number of partitions.

lim
n!1

S(n) <
38900

1988
u 19.57 (1)



C. Elasticity and Latency

We examined the system under an increasing load, to
understand how beneficial it can be to add more groups as the
number of transactions per minute increases (or the number of
clients grows). One of the main advantages of cloud computing
is the ability to provision resources on-demand, as the load
increases. Our goal is to provide Byzantine fault-tolerance
without compromising the elasticity of the cloud.

In Figure 8 we increased the number of clients from 1 to 20
and measured the throughput for systems with up to 5 groups.
Each client issues a new request as soon as the preceding reply
is received. Due to this, we can observe that a few clients are
able to lead the system to its maximum throughput.

25
0

50
0

75
0

10
00

5 10 15 20

Number of Clients

Tr
an

sa
ct

io
ns

/M
in

ut
e

Execution Type

1 Group

2 Groups

3 Groups

4 Groups

5 Groups

Fig. 8. Throughput for an increasing number of clients, with up to 5 groups.

The results shown in Figure 8 hint to the possibility of
making use of the cloud’s elasticity to increase the number of
Byzantine fault-tolerant groups as the load increases. In other
words, one may start the system with one such group and add
groups as the load increases. To better analyze this possibility,
we measured the latency (in milliseconds) to respond to each
request and plotted it against the total load of the system (in
transactions per minute). The result is shown in Figure 9.

40
0

50
0

60
0

70
0

80
0

250 500 750 1000

Transactions/Minute

La
te
nc
y

1 Group

2 Groups

3 Groups

4 Groups

5 Groups

Fig. 9. Latency of requests vs. throughput for systems with up to five groups.

In Figure 9 each curve represents a growing number of
clients for systems with up to five groups. For instance, the
left-most curve shows one Byzantine fault-tolerant group with

the number of clients varying between 1 and 20. One may
observe that the maximum throughput achieved by one group
stabilizes around 200 transactions per minute. At that point the
system is saturated and additional requests are queued, leading
to increasing latencies.

The cloud’s elasticity may be put to use by stipulating
a desired maximum latency and determining the number of
groups that are necessary to fulfill that requirement under a
given load. Figure 9 shows that it is possible to respond to
a growing load by elastically adapting the number of fault-
tolerant groups.

In fact, the possibility of using more resources to reduce
the response time is particularly important, because clients
are very sensitive to this parameter [30]. To better understand
the response time observed by clients, Figure 10 shows the
histogram of latencies, for a system with 11 clients and 5
groups. This configuration was chosen to measure the 5 groups
in a high load scenario of 1 000 transactions per minute.

0
10
0

20
0

500 700 900

Latency (ms)

Fr
eq

ue
nc

y

Fig. 10. Distribution of latencies.

We can observe that most requests are replied with a
latency around the average of 650ms. Nevertheless, some
requests take 50% above that average. In order to choose
an adequate elasticity plan (i.e., choose the number of active
groups at each point in time) it is suitable to observe the
cumulative distribution function, plotted in Figure 11.

0.
00

0.
25

0.
50

0.
75

1.
00

400 600 800 1000

Latency (ms)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
Fu

nc
tio

n

Fig. 11. Cumulative distribution function of latencies.

The cumulative distribution function of latencies, in Fig-
ure 11, shows that 95% of the requests are replied within
870ms (the plotted guidelines). This analysis should be per-
formed online, by using a specified service requirement. For
example, if the requirement for an application specifies that
the 95th percentile of the clients must receive replies within
800ms, one would need to startup at least one more group.



VI. CONCLUSION

This paper described a Byzantine fault-tolerant architec-
ture, designed for cloud applications with critical services that
may scale with the number of clients. We create groups of
2f+1 virtual machines running on distinct physical machines,
in order to ensure that a single fault is unable to affect multiple
virtual machines belonging to the same group.

The proposed design supports the relational data model.
Although this model is well known and frequently used, one
must address the fact that two or more groups of virtual
machines may require access to the same data items (i.e., the
data may not be completely partitioned). Hence, it requires
synchronization among different replicas to guarantee totally
ordered accesses to every data item.

Using the TPC-C benchmark, our results show that, within
reasonably large bounds, elasticity is achievable for cloud-
based BFT protocols even under the relational data model. We
believe that this may help a wide spectrum of critical services
intended to be deployed in the cloud. Further experiments,
using larger clusters, will provide a better understanding of
the impact on speedup of the number of database partitions,
or the percentage of non-parallelizable queries in TPC-C.

ACKNOWLEDGMENT

This work has been supported by the FCT, Fundação
para a Ciência e a Tecnologia, in the scope of Programa
Operacional Temático Factores de Competitividade (COM-
PETE) and Fundo Comunitário Europeu FEDER, through
project DECAF, An Exploratory Study of Distributed Cloud
Application Failures (EXPL/EEI-ESS/2542/2013).

REFERENCES

[1] K. Birman, G. Chockler, and R. van Renesse, “Toward a cloud comput-
ing research agenda,” SIGACT News, vol. 40, no. 2, pp. 68–80, 2009.

[2] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis,
“Efficient resource provisioning in compute clouds via VM multi-
plexing,” in Proc. of the 7th International Conference on Autonomic
Computing, ser. ICAC’10. ACM, 2010, pp. 11–20.

[3] J. D. Sonnek, J. B. S. G. Greensky, R. Reutiman, and A. Chandra,
“Starling: Minimizing communication overhead in virtualized comput-
ing platforms using decentralized affinity-aware migration,” in ICPP.
IEEE Computer Society, 2010, pp. 228–237.

[4] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and
M. D. Corner, “Memory buddies: Exploiting page sharing for smart
colocation in virtualized data centers,” in Proceedings of the 2009
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, ser. VEE ’09. ACM, 2009, pp. 31–40.

[5] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat, “Difference engine: harnessing memory
redundancy in virtual machines,” Communications of the ACM, vol. 53,
no. 10, pp. 85–93, 2010.

[6] Transaction Processing Council (TPC), TPC Benchmark C Standard
Specification, Revision 5.11. 777 North First St., Suite 600, San Jose,
CA 95112: Transaction Processing Council, Feb. 2010.

[7] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verı́ssimo,
“Efficient byzantine fault-tolerance,” IEEE Trans. Computers, vol. 62,
no. 1, pp. 16–30, 2013.

[8] Trusted Computing Group, “TPM main specification,” Trusted
Computing Group, Main Specification Version 1.2 rev. 85, Feb. 2005.
[Online]. Available: http://www.trustedcomputinggroup.org

[9] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, 1990.

[10] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J.
Wang, and J. R. Lorch, “Subvirt: Implementing malware with
virtual machines,” in IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2006, pp. 314–327. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/SP.2006.38

[11] IBM Corporation, “IBM X-Force 2010Mid-Year Trend and Risk
Report,” http://public.dhe.ibm.com/common/ssi/ecm/en/wgl03003usen/
WGL03003USEN.PDF.

[12] “Azure: Microsoft’s cloud platform — cloud hosting — cloud services,”
http://azure.microsoft.com/en-us/, accessed on April 30th, 2014.

[13] “Aws — amazon elastic compute cloud (ec2) - scalable cloud hosting,”
http://aws.amazon.com/ec2/, accessed on April 30th, 2014.

[14] Verizon, “Data breach investigations report,” 2013.
[15] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in

Proceedings of the Symposium on Operating System Design and Im-
plementation (OSDI), Feb. 1999.

[16] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. L. Wong, “Zyzzyva:
Speculative byzantine fault tolerance,” ACM Trans. Comput. Syst,
vol. 27, no. 4, 2009.

[17] T. Wood, R. Singh, A. Venkataramani, P. J. Shenoy, and E. Cecchet,
“ZZ and the art of practical BFT execution,” in Proceedings of the Sixth
Conference on Computer Systems, ser. EuroSys ’11, C. M. Kirsch and
G. Heiser, Eds. ACM, 2011, pp. 123–138.

[18] D. Malkhi and M. Reiter, “Byzantine quorum systems,” in Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing,
ser. STOC ’97. New York, NY, USA: ACM, 1997, pp. 569–578.

[19] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and
J. J. Wylie, “Fault-scalable byzantine fault-tolerant services,” SIGOPS
Oper. Syst. Rev., vol. 39, no. 5, pp. 59–74, Oct. 2005.

[20] M. Correia, G. S. Veronese, and L. C. Lung, “Asynchronous byzantine
consensus with 2f+1 processes,” in Proceedings of the 2010 ACM
Symposium on Applied Computing, ser. SAC ’10. New York, NY,
USA: ACM, 2010, pp. 475–480.

[21] B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden, “Tolerating
Byzantine Faults in Transaction Processing Systems Using Commit
Barrier Scheduling,” in ACM SOSP, Stevenson, WA, October 2007.

[22] R. Garcia, R. Rodrigues, and N. Preguiça, “Efficient middleware for
byzantine fault tolerant database replication,” in Proceedings of the Sixth
Conference on Computer Systems, ser. EuroSys ’11. New York, NY,
USA: ACM, 2011, pp. 107–122.

[23] S. Elnikety, S. Dropsho, and F. Pedone, “Tashkent: Uniting durabil-
ity with transaction ordering for high-performance scalable database
replication,” in Proceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006, ser. EuroSys ’06. New York,
NY, USA: ACM, 2006, pp. 117–130.

[24] I. Akturk, Replication of Metadata in Distributed Storage Systems:
Asynchronous Replication Across Multi-Master Servers. Germany:
LAP Lambert Academic Publishing, 2011.

[25] S. Elnikety, S. Dropsho, E. Cecchet, and W. Zwaenepoel, “Predicting
replicated database scalability from standalone database profiling,”
in Proceedings of the 4th ACM European Conference on Computer
Systems, ser. EuroSys ’09. ACM, 2009, pp. 303–316.

[26] S. Almeida, J. a. Leitão, and L. Rodrigues, “Chainreaction: A causal+
consistent datastore based on chain replication,” in Proceedings of the
8th ACM European Conference on Computer Systems, ser. EuroSys ’13.
New York, NY, USA: ACM, 2013, pp. 85–98.

[27] K. Grolinger, W. Higashino, A. Tiwari, and M. Capretz, “Data manage-
ment in cloud environments: Nosql and newsql data stores,” Journal of
Cloud Computing: Advances, Systems and Applications, vol. 22, no. 2,
2013.

[28] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining dig-
ital signatures and public-key cryptosystems,” Commun. ACM, vol. 21,
no. 2, pp. 120–126, Feb. 1978.

[29] H. Krawczyk, M. Bellare, and R. Canetti, “Hmac: Keyed-hashing for
message authentication,” United States, 1997.

[30] D. F. Galletta, R. Henry, S. McCoy, and P. Polak, “Web site delays:
How tolerant are users?” Journal of the Association for Information
Systems, vol. 5, pp. 1–28, 2003.


