
Physiological Measurement
     

ACCEPTED MANUSCRIPT

An open access database for the evaluation of respiratory sound
classification algorithms
To cite this article before publication: Bruno M Rocha et al 2019 Physiol. Meas. in press https://doi.org/10.1088/1361-6579/ab03ea

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2018 Institute of Physics and Engineering in Medicine.

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 193.136.212.193 on 15/02/2019 at 17:27

https://doi.org/10.1088/1361-6579/ab03ea
https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1361-6579/ab03ea


An Open Access Database for the Evaluation of
Respiratory Sound Classification Algorithms

Bruno M. Rocha1, Dimitris Filos2, Luís Mendes3,1, Gorkem Serbes4, Sezer
Ulukaya5,6, Yasemin P. Kahya6, Nikša Jakovljević7, Tatjana L. Turukalo7,
Ioannis M. Vogiatzis2, Eleni Perantoni2, Evangelos Kaimakamis2, Pantelis

Natsiavas2, Ana Oliveira8, Cristina Jácome8, Alda Marques8, Nicos
Maglaveras2,9, Rui Pedro Paiva1, Ioanna Chouvarda2, Paulo de Carvalho1

Abstract

Background and Objectives: During the last decades, there has been a significant
interest in the automatic analysis of respiratory sounds. However, currently
there are no publicly available large databases with which new algorithms can
be evaluated and compared. Further developments in the field are dependent
on the creation of such databases. Methods: This paper describes a public
respiratory sound database, compiled for an international competition, the first
scientific challenge of the IFMBE’s International Conference on Biomedical and
Health Informatics. The database includes 920 recordings acquired from 126
participants and two sets of annotations. One set contains 6898 annotated
respiratory cycles, some including crackles, wheezes, or a combination of both,
and some with no adventitious respiratory sounds. In the other set, precise
locations of 10775 events of crackles and wheezes were annotated. Results: The
best system that participated in the challenge achieved an average score of
52.5% with the respiratory cycle annotations and an average score of 91.2%
with the event annotations. Conclusion: The creation and public release of this
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database will be useful to the research community and can bring attention to
the respiratory sound classification problem.

1. Introduction

Respiratory conditions are the third leading cause of death worldwide [1] and
generate a significant burden for public health systems [2]. Because early
diagnosis and routine monitoring of patients with respiratory conditions are
important for timely interventions, considerable research endeavours have been
focused on these issues in the last couple of decades [3].

Respiratory conditions and their progress are typically assessed through
spirometry and lung auscultation, the former measuring the volume of air
mobilised in respiration and the latter assessing airflow through the trachea-
bronchial tree, via the sounds produced. Spirometry is the most useful and
commonly available test of lung function. This simple lung function measurement,
which has well established normal values, is effective and well validated for the
diagnosis and monitoring of upper and lower airway abnormalities [4]. However,
one major limitation of spirometry is its dependence on patient’s motivation and
cooperation [3], with high potential for error if effort is suboptimal. Additionally,
traditional spirometers are typically only used in some clinical settings due to
their high cost, challenges of patient guiding, and required calibration [5].

Concurrently, the existence of respiratory conditions may be assessed through
the auscultation of respiratory sounds. The stethoscope is the main tool for
lung auscultation in clinical practice. Auscultation is typically performed on
the anterior and posterior chest [6]. The expert clinician is trained to listen
to and recognise the pathologic findings, such as the presence of adventitious
sounds (e.g., crackles, wheezes). Although auscultation devices have evolved
from analog to digital, thus enabling storing, analysis, and visualisation in com-
puter systems, digital auscultation is not yet a mature and fully computational
procedure. Conventional auscultation has some drawbacks that limit its use
in research due to: 1) impossibility of providing continuous monitoring; 2) the
need of having an expert to detect presence/absence and clinical meaning of nor-
mal/abnormal sounds [7]; 3) its inherent inter-listener variability [8]; 4) human
audition and memory limitations [9]. These drawbacks hinder the effectiveness
of conventional auscultation as a way of monitoring and managing respiratory
conditions. Automated respiratory sound analysis could potentially overcome
these limitations.

This work aimed to leverage digital auscultation in terms of data and algo-
rithms availability for diagnostic purposes. The stimuli to accomplish this goal
was to a large extent the need for inclusion of respiration sound sensors in wear-
able technology for chronic obstructive pulmonary disease (COPD) monitoring,
raised by the FP7 project WELCOME (Wearable Sensing and Smart Cloud
Computing for Integrated Care to COPD Patients with Comorbidities) [10]. Such
an ambition for recording respiratory sounds in daily life via wearable sensors
would also require their automated analysis in a cloud computing environment,
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and the automatic detection of adventitious respiratory sounds for inclusion
of such findings in a decision support system for clinician support. The effort
presented in this paper, the generation of a respiratory sounds database and its
initial testing via a scientific challenge, was considered a necessary investment
towards introducing digital auscultation as a connected health technology, for
its wide adoption from hospital to primary care and home care settings.

2. Background

Respiratory sounds are relevant indicators of respiratory health and respiratory
conditions, as they are directly related to movement of air, changes within the
lung tissue, and position of secretions within the tracheobronchial tree [11].

Typically, respiratory sounds are classified as normal or adventitious. Adven-
titious respiratory sounds are superimposed on normal respiratory sounds and
can be discontinuous (crackles) or continuous (wheezes) [12].

Crackles are discontinuous, explosive, and non-musical adventitious respi-
ratory sounds that occur frequently in cardiorespiratory conditions [13]. They
are usually classified as fine and coarse crackles based on their duration, loud-
ness, pitch, timing in the respiratory cycle (i.e., inspiration or expiration), and
relationship to coughing and changing body position [14]. Appearance of crack-
les may be an early sign of respiratory disease [15]. Number of crackles per
breath is associated with the severity of the disease in patients with interstitial
lung conditions [16]. Moreover, the waveform and timing of crackles may have
clinical significance in differential diagnosis of cardiorespiratory conditions [13].
When present, crackling sounds in patients with lung fibrosis are typically fine,
repetitive, and end inspiratory, whereas those associated with chronic airways ob-
struction (e.g., COPD, emphysema or bronchiectasis) are coarse, less repeatable,
and occur early in inspiration [17].

Wheezes are musical respiratory sounds that usually last more than 100
ms [13]. They are a common clinical sign in patients with obstructive airway
conditions, such as asthma and COPD [15]. Marini et al. [18] have demonstrated
that there is an association between the degree of bronchial obstruction and
the presence and characteristics of wheezes. The strongest association has been
obtained when the degree of bronchial obstruction is compared to the proportion
of the respiratory cycle occupied by wheezing [19].

In the last decades, many researchers have developed methods for the auto-
matic detection or classification of adventitious respiratory sounds [20–26]. Most
systems comprise two steps: 1) relevant features are extracted from the signal; 2)
extracted features are used to detect or classify adventitious respiratory sound
events (i.e., crackles and wheezes). In developing a detection or classification
algorithm, especially if machine learning techniques are used, it is important to
take note of how the data are used to train, test, and validate the algorithm.

The most common features employed in the literature were identified in a
recent systematic review [7]. These include Mel-frequency cepstral coefficients
(MFCCs) [27], spectral features [28], entropy [29], and wavelet coefficients [30].

3

Page 3 of 28 AUTHOR SUBMITTED MANUSCRIPT - PMEA-102813.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Table I: List of Publicly Available Respiratory Sound Databases

Auscultation Skills: Breath and Heart Sounds, 4th edition [39]
East Tennessee State University repository [40]
Fundamentals of Lung and Heart Sounds [41]
Heart and Lung Sounds Reference Library [42]
Littmann repository [43]
Lung Sounds: An Introduction to the Interpretation of the Auscultatory Finding [44]
R.A.L.E. repository [37]
Secrets Heart & Lung Sounds Workshops [45]
SoundCloud repository [46]
The Chest: Its Signs and Sounds [47]
Understanding Heart Sounds and Murmurs [48]
Understanding Lung Sounds, the 2nd edition [49]
Understanding Lung Sounds, the 3rd edition [38]

Machine learning algorithms proposed in the literature comprise empirical rule-
based methods [31], support vector machines [32], artificial neural networks [33],
Gaussian mixture models [34], k-nearest neighbours [35], and logistic regression
models [36].

The small number of patients involved in most studies that proposed auto-
matic classification of respiratory sounds have hindered their generalisability.
Although it is possible to achieve very good classification results with small
samples by customising the algorithm to fit the data, as the number of patients
increases to dozens or hundreds, the features learned from small datasets typically
fail to generalise [33].

A core problem in the field is the lack of publicly available large databases,
which can serve to develop algorithms and compare results. Although most
works used in-house data collections, there were 13 publicly available databases
among the data sources of the 77 articles covered by the systematic review of
Pramono et al. [7]. These databases are from 4 online repositories and 9 audio
CD companion books, shown in Table I. The most referenced databases are the
R.A.L.E. repository [37] and the audio CD from Understanding Lung Sounds
3rd edition [38]. As these repositories and CDs were designed for teaching,
they generally include a small number of examples of each type of respiratory
sound. Most of these sounds are clear and do not include environmental noise,
commonly present in clinical practice, thus are not suitable for generating realistic
classification models.

To overcome these difficulties, we compiled a database of respiratory sounds
[50] and organised a scientific challenge at the International Conference on
Biomedical and Health Informatics (ICBHI) 2017. Details of the database will be
further discussed in the next section, but it is currently available to the research
community (http://bhichallenge.med.auth.gr/). In the website, it is possible to
download the audio files, both sets of annotations, and clinical/demographic
information about the participants.
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Table II: Demographic Information of Database (NA: Not Available)

Number of recordings 920
Sampling frequency (number of recordings) 4 kHz (90); 10 kHz (6); 44.1 kHz (824)
Bits per sample 16
Average recording duration 21.5 s
Number of participants 126: 77 adults, 49 children
Sex 79 male, 46 female (NA: 1)
Age (mean ± standard deviation) 43.0 ± 32.2 years (NA: 1)
Age of adult participants 67.6 ± 11.6 years (NA: 1)
Age of child participants 4.8 ± 4.6 years
BMI of adult participants 27.2 ± 5.4 kg/m2 (NA: 2)
Weight of child participants 21.4 ± 17.2 kg (NA: 5)
Height of child participants 104.7 ± 30.8 cm (NA: 7)

3. Data Collection

The ICBHI Scientific Challenge database contains audio samples, collected
independently by two research teams in two different countries, over several years.
Ethical approval was obtained from the Ethics Committees of the appropriate
institutions. The database contains 920 annotated audio samples from 126
participants and it is currently the largest publicly available database. Hence,
it has the potential to be used as a benchmark in the field. The database is
described in Table II (as the relationship between body-mass index (BMI) and
obesity is not linear in children, we opted to instead publish height and weight
values for child participants, i.e., younger than 19 years-old, as recommended by
clinical investigation guidelines [51].

3.1. Respiratory Research and Rehabilitation Laboratory of the School of Health
Sciences, University of Aveiro

Audio samples recorded by the research team of the Respiratory Research and
Rehabilitation Laboratory (Lab3R) of the School of Health Sciences, University
of Aveiro (ESSUA) constitute most of the database. Samples were recorded in
Aveiro, Portugal, at ESSUA and Hospital Infante D. Pedro, in Porto, Portugal,
at Hospital Santa Maria and Lusíadas, and at the Faculty of Health Sciences,
University of Southampton, England. Sounds from five studies conducted by
this research team were included in the database. All recordings followed the
computerised respiratory sounds analysis guidelines for short-term acquisitions
[52]. Sounds were recorded from the trachea and six chest locations: left and
right anterior, posterior, and lateral. Sounds were collected in clinical and non-
clinical (home) settings. The acquisition of respiratory sounds was performed on
participants of all ages. Participants included patients with lower respiratory
tract infections, upper respiratory tract infections, pneumonia, COPD, asthma,
bronchiolitis, bronchiectasis, and cystic fibrosis.

In three studies, the sounds were collected sequentially with a digital stetho-
scope (Welch Allyn Meditron Master Elite Plus Stethoscope Model 5079-400).
In the other studies, the sounds were collected simultaneously using either
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seven stethoscopes (3M Littmann Classic II SE) with a microphone in the main
tube or seven air-coupled electret microphones (C 417 PP, AKG Acoustics)
located into capsules made of teflon. Respiratory sounds were acquired using
the Computerised Lung Auscultation – Sound System (CLASS) [53].

3.2. Aristotle University of Thessaloniki
Respiratory sounds were acquired by the research team of the Aristotle University
of Thessaloniki (AUTH) at the Papanikolaou General Hospital, Thessaloniki and
at the General Hospital of Imathia (Health Unit of Naousa), Greece. Sounds
were collected sequentially from six chest locations, as shown in Fig. 1, with a
digital stethoscope (WelchAllyn Meditron Master Elite Plus Stethoscope Model
5079-400 or 3M Litmmann 3200). During the recordings, the participants were
seated and were asked to produce events of cough, speech, laughter, and throat
clearing. The acquisition of respiratory sounds was performed on adult and
elderly patients. All patients had COPD with comorbidities (e.g., heart failure,
diabetes, hypertension). These recordings were acquired as part of the European
project WELCOME [10].

Figure 1: Chest locations for the recording of respiratory sounds.

4. Data Annotation

4.1. Lab3R
The most common method to evaluate the robustness of algorithms to detect
adventitious respiratory sounds is the annotation of sounds by respiratory health
professionals [54]. Two respiratory physiotherapists and one medical doctor,
with experience in visual-auditory crackles/wheezes recognition, independently
annotated the sound files in terms of presence/absence of adventitious sounds
and identification of breathing phases. However, as annotation is a difficult and
slow process, all the sound files in the Lab3R database were annotated by only
one expert. The Respiratory Sound Annotation Software was used to annotate
the sound files [55]. Fig. 2 reproduces a sample of the annotation process.
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Figure 2: A sample of the respiratory sound annotation process (Lab3R).

4.2. AUTH
Three experienced physicians, two specialised pulmonologists and one cardiologist,
annotated the sound files using Audacity 2.0.6 [56], a free, open source, cross-
platform software for recording and editing sounds. The following sounds were
discriminated in the annotation process: normal (respiratory sound), fine crackles,
coarse crackles, wheezing, speech, cough, artefact. Fig. 3 reproduces a sample of
the annotation process.

Figure 3: A sample of the respiratory sound annotation process (AUTH).

5. ICBHI Challenge

In the unofficial phase of the challenge, 18 systems were submitted from 5
international research teams. In the official phase, 3 of those teams uploaded a
total of 11 entries. The 2 best teams presented their algorithms at ICBHI 2017.
Below is an overview of their systems.
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5.1. Serbes, Ulukaya, and Kahya (SUK) team
In this database, respiratory sounds have different sampling rates. Therefore,
as a preprocessing step, each lung sound segment is resampled to 4000 Hz.
Afterwards, a 12th order Butterworth band-pass filter having 120 and 1800 Hz
cut-off frequencies is employed on raw lung sound signals to eliminate noise
components that are due to coughing, intestinal sounds, stethoscope motion,
speech, and heart sounds. Respiratory sounds have low and high frequency
components and these are overlapped in both time and frequency domains.
Therefore, a resonance based signal separation method, which uses non-dynamic
Tunable Q-Factor Wavelet Transform [57], is employed to decompose respiratory
sounds into low and high resonance, and residual channels. At the end of
resonance based decomposition, it can be observed that crackle components
are separated into low resonance, wheeze components are separated into high
resonance, and noise components are separated into residual channels.

Figure 4: Step by step flowchart of SUK preprocessing and classification system.

When the duration of crackle and wheeze signals is considered, it is known
that crackles are short (typically less than 20 ms) signals while wheezes are long
(more than 100 ms) signals [12]. Therefore, in order to extract robust features,
Short Time Fourier Transform (STFT) is applied to low/high resonance and
residual components, and time-frequency distributions of separated channels are
obtained. By doing that, the individual time-frequency behaviour of each class
type (crackle, wheeze or normal classes) is obtained without the undesirable
overlaps in the frequency domain. However, each crackle, wheeze, and normal
signal segment has different durations and, to stabilize the learning algorithm,
each output of STFT is integrated over time, resulting in the power distribution
of separated signal components (high/low resonance and residual) over frequency.
Moreover, as a fast adaptive time-scale representation based feature extraction
method, Tunable Q-Factor Wavelet Transform [58] is also applied to low/high
resonance and residual components resulting in wavelet coefficients. To decrease
the number of features and address the curse of dimensionality, statistical (mean,
standard deviation, kurtosis, minimum, maximum and skewness) and spectral
(linear energy, Teager-Kaiser energy, Shannon entropy) features are derived from
wavelet coefficients. At the end of the feature extraction step, to increase the
discriminative power of the learning algorithm, feature level fusion is applied to
STFT and wavelet based features.
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In the learning step of the proposed study, to reduce the complexity of the
learning model, Principal Component Analysis (PCA) is applied to the feature
set, preserving 90% of the variance. Prior to feeding the classification algorithm,
extracted features are normalized to [-1, +1] range. Finally, both STFT based
spectral features and wavelet transform plus STFT based features are fed into
a Support Vector Machine classifier with a grid search parameter optimization.
A step by step flowchart of the proposed system is depicted in Fig. 4. A more
detailed explanation of this system can be found in Serbes et al. [59].

5.2. Jakovljević and Lončar-Turukalo (JL) team
The audio recordings in this database varied in sampling frequency, recording
locations, number of samples per class, and levels of different types of real noise.
To overcome this diversity in the database, all recordings were resampled to 4000
Hz, preserving the relevant frequency range [60-2000 Hz] for the identification
of wheezes and crackles [14]. The team investigated two schemes for removal
of low frequencies and heart beat sounds: low order bandpass filter (denoted
T1) and high order finite impulse response filter with fc = 100Hz, and constant
group delay τg = 1024samples obtained by Hamming window function.

The stationary noise in audio files has been suppressed using spectral sub-
traction (SS) [60]. It is performed on the signal segmented into 30 ms long
frames shifted by 15 ms using Hann window function. For a frame captured
at a time instant t, discrete Fourier transform (DFT), X(k, t), is obtained at
each frequency bin k. The noise magnitude spectrum |D(k)| is estimated as the
mean value of |X(k, t)| over 1% of the frames with minimum energy in the audio
signal, excluding invalid (zero energy) frames. In the first approach, denoted SS1
(1), the denoised magnitude spectrum |Xd(k, t)| is obtained by subtracting the
magnitude spectra of stationary noise, setting the negative magnitude values to
1% of |X(k, t)|:

Xd(k, t) =
{
|X(k, t)| − |D(k)| |X(k, t)| > |D(k)|
0.01|X(k, t)| else (1)

The second approach, denoted SS2 (2), additionally reduces the level of
musical noise introduced by magnitude spectrum subtraction. As that breath
sound should be dominant in the signal, for each k the estimated noise level
|D(k)| has been iteratively reduced by 10%, until in at least 60% of frames
|X(k, t)| > |D(k)| is fulfilled. The denoised magnitude spectrum is obtained by:

Xd(k, t) =
{
|X(k, t)| − |D(k)| |X(k, t)| > |D(k)|
|X(k, t)|2 else (2)

To accommodate quadrature scaling, |X(k, t)| has to be range normalised.
To suppress sudden drops of magnitude, |X(k, t)| is monitored in 5 successive
frames. If |X(k, t)| < |D(k)| in at least 3 of 5 adjacent frames, the frequency bin
k is marked as noise. An entire frame is considered as corrupted by noise and
set to zero (|Xd(k, t)| = 0, for each k) if more than 70% of the bins are marked
as noise.
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The synthesis step merges the obtained denoised magnitude spectrum with
the original phase spectrum argX(k, t) and the reconstructed signal is the sum
of overlapping segments obtained by inverse DFT of Xd(k, t).

The estimation of MFCCs on denoised signals is done every 10 ms using
30 ms long windows. 16 equal-width overlapped channels in mel-frequency
domain divides the frequency range of interest [50, 2000 Hz]. The coefficient C0,
representing energy in the selected frequency band, is discarded as it significantly
correlates with heart beat sound. The cepstral coefficients are z-normalised per
record to remove variations caused by the remaining noise. We introduce first
time derivatives of MFCCs to track their dynamics and to decorrelate successive
feature vectors. The cardinality of the feature vectors, which include both static
and dynamic MFCCs, is d = 30.

A respiration cycle for each sound class at each location is represented as
a left-to-right HMM with S states (Fig. (5)), because the acoustic content of
the same sound class varies depending on the recording location. A full HMM
description contains: initial state probabilities (Π), state transition matrix (A),
and emitting probability density function for each state (bs). A state emitting
probability density function (pdf), for a given d-dimensional observation o,
bs(o), is defined as the weighted mixture of M Gaussians characterised by their
mean and covariance matrix. As commonly done, the same number of mixture
components is used for each state.

The HMM parameters are estimated maximising the likelihood that the
models will generate the training sequence using expectation maximisation
algorithm (Baum-Welch estimation) [61]. The initial parameters were obtained
by the time equidistant partition of the observation sequence between states, as
the sample mean µs and the covariance matrix Σs. In case of several mixture
components per state, means (µi) were obtained by random sampling from normal
distribution N (µs,Σs), and covariance matrices (Σi) as the corresponding
sample covariance matrix (Σi = Σs). The transition probabilities (aij) were
initialised to 0.5, except for aSS , initialised to 1. With these settings, the
algorithm converged in 6-12 iterations.

During the test phase, each HMM (λc), c = 1 . . . , 28 is aligned with an
unknown observation sequence and the classification decision is based on the
maximum likelihood criterion.

Additionally, an ensemble of classifiers trained over 10 different folds was
evaluated. All classifiers had the same model complexity (28 models with 5
states and 1 Gaussian per state) and were trained with a single learning method.
The majority voting was used as a decision scheme. It should be noted that
computational complexity of this approach is 10 times greater. A more detailed
explanation of this system can be found in Jakovljević and Lončar-Turukalo [62].

5.3. Baseline System
To account for the different sampling rates, we first resample each audio recording
to 4000 Hz. Then, using the MIR Toolbox [63], we extract 13 MFCCs in 10
ms frames with 5 ms overlap (due to the low stationarity of the signal) and
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Figure 5: Step by step flowchart of JL preprocessing and classification system.

Table III: Determination Rules

Entry’s output
Crackles Wheezes Crackles+Wheezes Normal

R
ef

er
en

ce
la

be
l

Crackles (C) Cc Cw Cb Cn

Wheezes (W ) Wc Ww Wb Wn

Crackles+Wheezes (B) Bc Bw Bb Bn

Normal (N) Nc Nw Nb Nn

compute their mean for each respiratory cycle (event, in the case of Experiment
2, as discussed below). Finally, we employ a pruned decision tree to classify each
respiratory cycle/event.

5.4. Evaluation Metrics
For each entry, we computed two performance measures: average score (AS) and
harmonic score (HS). AS (5) is the average of sensitivity (SE) (3) and specificity
(SP) (4), while HS (6) is the harmonic mean of SE and SP. Table III shows the
determination rules employed to calculate SE and SP.

SE = (Cc +Ww +Bb)/(C +W +B) (3)

SP = Nn/N (4)

AS = (SE + SP )/2 (5)

HS = (2 ∗ SE ∗ SP )/(SE + SP ) (6)

6. Experiment 1: ICBHI Scientific Challenge (Annotation of Respi-
ratory Cycles)

6.1. Data Preparation for the Challenge
The challenge was structured in two phases: unofficial and official. During each
phase, data from the two aforementioned databases were divided into training
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( 60%) and testing ( 40%) sets. The ground-truth annotations comprised four
classes of respiratory cycles: containing crackles, containing wheezes, containing
both, or normal (i.e., not exhibiting crackles or wheezes). A respiratory cycle is
the sequence of events during which a human being inhales (inspiration) and
exhales (expiration) a given volume of air through the respiratory system [64].
Fig. 6 shows an example of an annotated sound recording.

Figure 6: A segment including eight respiratory cycles: the third and sixth contain crackles
(green), the eighth contains wheezes (blue), the fifth contain both crackles and wheezes (yellow),
and the others are normal (black). Respiratory cycle boundaries are represented by vertical
lines (red).

During the official phase of the challenge, 2063 respiratory cycles from 539
recordings derived from 79 participants were included in the training set, while
1579 respiration cycles from 381 recordings derived from 49 patients were included
in the testing set. Additional details about the distribution of the adventitious
respiratory sounds between training and testing partitions can be found in Table
IV. As depicted, effort was paid to represent in analogy the different types of
findings in training and testing data sets. Table V presents the demographic
information distributed by training and testing sets.

6.2. Aggregated Results
This section presents the best results achieved by the two finalists of the challenge,
Serbes, Ulukaya, and Kahya (SUK) team and Jakovljević and Lončar-Turukalo
(JL) team. During the challenge, the size of the algorithms each team could
send was restricted. After the challenge, each finalist sent a new algorithm to
be evaluated, unrestricted in size. All the submitted algorithms used the same
sound recordings for training. Fig. 7 shows the scores for the new (JL new and
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Table IV: Summary of the Training and Testing Sets Used in Experiment 1

Training Set Testing Set
Lab3R AUTH All Lab3R AUTH All

participants 72 7 79 38 11 49
recordings 507 32 539 317 64 381
crackles 1104 111 1215 588 61 649
wheezes 459 42 501 273 112 385
crackles+wheezes 335 28 363 106 37 143
normal 1740 323 2063 1216 363 1579

Table V: Demographic Information of Training and Testing Sets (NA: Not Available)

Training Set Testing Set
Number of participants 51 adults, 28 children 28 adults, 21 children
Sex 47 male, 32 female 34 male, 14 female (NA: 1)
Age 45.9 ± 31.6 years 39.6 ± 33.2 years (NA: 1)
Age of adults 67.8 ± 12.6 years 67.9 ± 9.4 years (NA: 1)
Age of children 6.0 ± 5.2 years 3.2 ± 3.2 years
BMI of adults 27.0 ± 6.0 kg/m2 (NA: 1) 27.4 ± 3.9 kg/m2 (NA: 1)
Weight of children 25.8 ± 21.5 kg (NA: 5) 16.5 ± 8.7 kg
Height of children 112.7 ± 34.4 cm (NA: 6) 95.8 ± 24.1 cm (NA: 1)
Respiratory cycle duration 2.73 ± 1.21 s 2.65 ± 1.11 s
Wheeze duration 0.63 ± 0.84 s 0.56 ± 0.76 s
Crackle duration 0.05 ± 0.19 s 0.05 ± 0.15 s

SUK new) and the best old (JL old and SUK old) systems submitted by each
finalist, as well as the scores attained by the baseline model.

First, we note that the scores are much lower than those reported in the
literature. As will be shown later, the length of the annotated cycles might
be relevant to explain these results. Then, when considering Harmonic Score
(HS), we see that both teams outperform the baseline. Regarding Average Score
(AS), only SUK’s systems surpass the baseline. This difference is due to great
discrepancies between the systems’ specificities and sensitivities.

Fig. 8 shows specificity (SP) and sensitivity (SE) values for the same systems.
We see that the baseline SP is much higher than SE, meaning the baseline system
classified most cycles as ‘normal’. Only one system outperforms the baseline in
both measures: SUK new.

Fig. 9 shows SE values for each class except ‘normal’. Baseline SE is only
shown for ‘crackles’, as it is 0 for both ‘wheezes’ and ‘crackles + wheezes’. This
means that the baseline system only considered the two most represented classes
in the database, ‘normal’ and ‘crackles’, ignoring the other two. JL new was the
system that achieved higher SE in each class, at the cost of reduced SP.

6.3. Results per Participant
In this section, we analyse the results for each participant. However, we have to
acknowledge some limitations of this analysis. First, the number of cycles per
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Figure 7: Average Score and Harmonic Score for the respiratory cycle annotations.

Table VI: Results per Participant (Experiment 1)

AS HS SP SE
M SD M SD M SD M SD

JL old 40% 13% 22% 20% 50% 34% 31% 28%
JL new 39% 12% 23% 19% 38% 28% 41% 29%
SUK old 47% 12% 30% 20% 71% 27% 29% 25%
SUK new 47% 11% 24% 22% 78% 21% 20% 21%
Baseline 43% 8% 15% 16% 75% 23% 12% 16%

participant is highly variable. The testing set contains 49 participants with an
average of 56 cycles, standard deviation of 50, maximum of 208, and minimum
of 7. Furthermore, the respiratory cycles of 16 participants are all normal, i.e.,
do not contain adventitious respiratory sounds. Therefore, the AS, HS, and
SE values do not take into account these participants. Besides, even when the
number of recorded cycles for a particular participant is high, the number of
cycles containing adventitious sounds could be as low as 1, hence skewing the
results. Table VI presents the mean (M) and standard deviation (SD) of the
evaluation metrics for each system.

As in the aggregated results, SUK’s systems outperform the baseline and JL’s
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Figure 8: Specificity and sensitivity values for the respiratory cycle annotations.

systems in AS and HS. The most interesting aspect of these results to mention
is the high standard deviation, as it provides evidence of the low reliability of
these systems in this dataset.

7. Experiment 2: Post-Challenge (Annotation of Adventitious Respi-
ratory Sound Events)

7.1. Data Preparation
In this experiment, even though the sound recordings were the same, the ground-
truth comprised annotations of individual events of wheezes and crackles. The
average duration of these events can be seen in V. For this reason, the number of
classes was reduced to three: crackles, wheezes, and normal. Fig. 10 shows the
annotated crackles and wheezes superimposed on the same sound recording of Fig.
6. Fig. 11 depicts the spectrogram of the same recording. The spectrogram is
focused on the low frequencies (100 to 500 Hz). Although adventitious respiratory
sounds are typically associated with particular signatures in the spectrogram, it
is not a trivial task to annotate these events by solely inspecting the spectrogram.
As the annotations correspond to events, not respiratory cycles, the events for
the ’normal’ class were created using a custom script. Approximately half of
them are 50 ms and the other half are 150 ms events. Their positions in the audio
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Figure 9: Sensitivity values for each class in the respiratory cycle annotations.

Table VII: Summary of the Training and Testing Sets Used in Experiment 2

Training Set Testing Set
Lab3R AUTH All Lab3R AUTH All

participants 72 7 79 38 11 49
recordings 507 32 539 317 64 381
crackles 5808 188 5996 2760 121 2881
wheezes 1103 70 1173 518 207 725
normal 2348 665 3013 1597 415 2012

files are randomised in a unique fashion for each file, with every file containing
at least one event per 2 s. Table VII provides details about the number of events
in each class.

7.2. Aggregated Results
This section presents the results achieved by each finalist with the event annota-
tions, as well as the results obtained by the baseline model. The submissions (JL
new and SUK new) were adapted to the reduction in the number of classes from
4 to 3. Because some crackle events contained less than 5 frames and correlation
between the frames was high, the number of HMM states in JL new had to be
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Figure 10: A segment containing 20 crackles (green) and 2 wheezes (blue) superimposed on the
audio waveform (black). Respiratory cycle boundaries are represented by vertical lines (red).

Figure 11: Spectrogram of the segment depicted in Fig. 6 and 10.

reduced from 5 to 1 in this experiment. Fig. 12 shows the scores for the event
annotations.

First, we note that only SUK’s system obtains higher scores than the baseline.
SUK’s scores are in line with the results reported in the literature. We can also
see that the differences between HS and AS are not significant for any system.
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Figure 12: Average Score and Harmonic Score for the event annotations.

Fig. 13, which displays sensitivity and specificity values, confirms the reason
for similar HS and AS: the disparity between SE and SP is quite smaller than
the one seen with the cycle annotations.

Fig. 14 shows sensitivity values for each class except ‘normal’. SUK’s system
attains almost perfect SE for ‘crackles’, while the baseline’s does not reach 80%
and JL’s is below 60%. For ‘wheezes’, SUK’s SE is almost 80%, while JL’s is
above 50% and the baseline’s is less than 10%.

7.3. Results per Participant
In this section, we analyse the results for each participant. However, we have to
acknowledge that the recordings of 16 participants do not present adventitious
respiratory sounds. Thus, the AS, HS, and SE values do not take into account
these participants. Besides, although the variability in the number of events per
participant has been reduced in this experiment, the number of adventitious
respiratory sounds each participant presents is still highly variable, hence skewing
the results. Table VIII presents the mean (M) and standard deviation (SD) of
the evaluation metrics for each system.

Although the standard deviations are still large, SUK’s system seems clearly
better suited for this problem than the other systems.
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Figure 13: Specificity and sensitivity values for the event annotations.

Table VIII: Results per Participant (Experiment 2)

AS HS SP SE
M SD M SD M SD M SD

JL new 55% 15% 49% 19% 51% 18% 61% 22%
SUK new 82% 21% 80% 25% 86% 22% 82% 22%
Baseline 46% 17% 36% 23% 55% 22% 45% 29%

8. Discussion

In this work, we have introduced a new database for the development of al-
gorithms dedicated to the automatic classification of adventitious respiratory
sounds. Additionally, we presented two experiments. In the first experiment,
the ICBHI challenge, participating teams had to develop systems that classify
respiratory cycles as one of four possible classes: containing crackles, containing
wheezes, containing both crackles and wheezes, or normal (devoid of adventi-
tious respiratory sounds). In the second experiment, participating teams had to
develop systems that classify events as crackles, wheezes, or normal.

Among the factors that influence the performance of the different systems,
the precision of the annotations appears to be the most important. As can be
seen in the comparison between Fig. 6 and Fig. 10, adventitious respiratory
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Figure 14: Sensitivity values for each class in the event annotations.

sound events are contained within respiratory cycles and are usually much shorter
than them. Therefore, systems trained on precisely-annotated events have higher
probability of correctly classifying crackles and wheezes than systems trained on
respiratory cycles, as the adventitious respiratory sound events cover only part
of a cycle.

However, only SUK’s system took full advantage of the more precise annota-
tions. We speculate that it might be due to the domain knowledge that SUK’s
system incorporated, i.e., carefully engineered features taking into account the
peculiarities of adventitious respiratory sounds’ signals. Both JL’s system and
the baseline could not model correctly the desired signals, showing that MFCCs
may not be the most appropriate features for the discrimination of different
types of respiratory sounds.

Some limitations of the database may have influenced the performance of the
evaluated systems, such as the lack of healthy adult participants, the absence of
gold standard annotations (i.e., annotations from multiple annotators), and the
shortage of confounding noise sources.

It has been shown that healthy adults can exhibit adventitious respiratory
sounds [65] and it would be useful to compare the characteristics and frequency
of these sounds in healthy people and patients.

All the files in this database were annotated by a single health professional.
While this has been common practice in the literature because annotation is
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a very time-consuming task, Dinis et al. [55] demonstrated the importance of
obtaining annotations from multiple annotators and creating agreement metrics
robust enough to extract reference annotations. A recent study found moderate
to good agreement between observers when classifying crackles (Fleiss’ kappa =
0.62) and wheezes (Fleiss’ kappa = 0.59) [66].

Finally, although most files in this database contain some confounding noises,
such as handling noise, cough, and speech, a robust database should contain
other noise sources that would only be captured if in-the-field recordings were
available. Zhang et al. [67] have analysed how an eating detection algorithm
with high performance in experiments in the lab fails to generalise in the field.
It would be desirable that a similar study be conducted with respiratory sound
classification algorithms.

9. Conclusion

Respiratory sound classification is a complex task, as we expect to have demon-
strated with the establishment of this database and the related scientific challenge.
The public release of the respiratory sound database can serve many users. Re-
searchers that want to develop algorithms for respiratory sound analysis may
benefit from the access to real clinical signals and both sets of annotations, along
with the presented experiments, approaches, and results. Likewise, this database
can be useful for biomedical engineering education, by providing clinical signals
to professors and students. Furthermore, we believe that new wearable systems
and home-based measurements would enrich the field with the creation of big
databases and propel digital auscultation to the era of ‘big data’. That would
allow for recent advances in the analysis of large databases to be applied in
this field, as well as letting researchers study the impact of different factors
(e.g., gender, body size, recording place, subjects’ position and respiratory flow)
on respiratory sound characteristics. We hope this respiratory sound database
will inspire researchers interested in respiratory sound analysis to continue their
venture in pushing forward this field.
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