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Abstract—We propose adding an irregular quadrature ampli-
tude modulation (QAM) constellation to a wireless transmission
scheme in order to obtain greater control over the signal-to-
noise ratio (SNR) required to successfully decode the signal. By
altering the separation between adjacent symbols, the minimum
required SNR is raised without degradation in the performance
of the scheme. This allows the system to adapt to preferable
channel conditions for the authorized user, making it harder
for eavesdroppers to intercept and decode the transmission, thus
making the communication safer. In addition, we show that by
overlaying a coset code onto the QAM constellation, a new,
stronger security gap metric can be further improved. Results
show the effectiveness of this strategy with an interleaved coding
for secrecy with a hidden key (ICSHK) scheme.

Index Terms—quadrature amplitude modulation, physical-
layer security, security gap, coset coding

I. INTRODUCTION

One of the greatest issues facing wireless communication
in today’s increasingly connected world is security. With
the advent of the Internet of Things (IoT) [1], [2], more
devices are communicating sensitive information, including
health and financial data. Many of these devices are power
constrained, rendering heavy encryption untenable. Instead,
we must look to less power-intensive methods to secure this
data [3], [4]. Physical-layer security techniques [5], [6], [7]
form one potential solution, as they can guarantee security
with less computation than typical encryption [8]. Current
attempts to adapt practical schemes for physical-layer security
include techniques rooted in cooperative jamming [9], [10],
link scheduling [11], smart sub-carrier selection of an orthog-
onal frequency division multiplexing (OFDM) waveform [12],
and smart selection from a bank of available codes and code
rates [13].

One class of schemes has been designed to exploit differ-
ences in signal quality between authorized users and eaves-
droppers to ensure secrecy. While effective, these schemes are
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based on fixed values for signal quality, and cannot adapt to
changing conditions. In this paper, we propose an irregular
quadrature amplitude modulation (QAM) digital modulation
scheme as a way to introduce greater control over the mini-
mum allowable signal-to-noise ratio (SNR) for an authorized
user and the maximum allowable SNR for an eavesdropper.
By dynamically changing the spacing on this irregular con-
stellation in response to differing levels of signal quality, the
system is able to maintain guarantees of reliability for an
authorized user while also protecting against a wider range of
possible eavesdroppers. We consider this adaptive modulation
technique in connection with the interleaved coding for secrecy
with a hidden key (ICSHK) practical physical-layer security
coding scheme from [14] as a use case. Finally, we examine
the value of overlaying a coset coding scheme onto the
irregular QAM constellation for greater security at a reduced
transmission rate. The rest of the paper is organized as follows.
First, we describe our system model, our security metrics,
and the ICSHK scheme in Section II. We then present the
method of utilizing irregular QAM to increase the minimum
required SNR for an authorized receiver in Section III. Section
IV discusses how to overlay a coset code onto the QAM
constellation and presents the results. Finally, Section V offers
conclusions of the work.

II. MODEL

A. System Model

For this paper, we use the model presented in Fig. 1. The
system consists of three entities, each with a different role:
Alice, Bob, and Eve. Alice begins with the length k message
Mk, which she wishes to transmit reliably to Bob without
Eve being able to also receive the message. To achieve this,
she processes the message using three blocks. The first is an
encoder that outputs the length n codeword Xn. This is fed
into a buffer that breaks Xn into coded segments, denoted as
Mk′

e . These are individually sent through a block that encodes
the coded segments and maps them to a modulation scheme.
The modulated symbols, denoted Xn′

m , are sent through two
independent additive white Gaussian noise (AWGN) channels,
arriving at Bob’s receiver as Y n′

m and at Eve’s receiver as Zn′

m .
These signals are demodulated into M̂k′

e and M̃k′

e , buffered
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Fig. 1. Block diagram of wireless communication system model, showing the signal path between Alice and both Bob and Eve.

into Y n
e and Zn

e , then decoded into M̂k and M̃k, which rep-
resent Bob’s and Eve’s estimate of the message, respectively.
The overall rate of the transmission Rt, is the product of the
rates of the encoder Re, and the coded modulation Rm, so
that

Rt = Re ×Rm

=
k

n
× k′

n′ .
(1)

B. Metrics

Alice and Bob are successful if two conditions hold. The
first is that Bob reliably receives the communication, meaning
that there is very low probability of error in his received
version of the message, M̂k. In this paper, we measure
reliability using the bit-error rate (BER), P̂b which is equal
to

P̂b = Pr(M ̸= M̂), (2)

calculated at the bit level. In this paper, without loss of
generality, we consider the system reliable of Bob’s BER is
less than 10−4, or 1 error in 10,000 bits. The results hold for
other thresholds.

The second condition that must hold is security against Eve,
meaning that, with very high probability, Eve is unable to
extract any information from M̃k. We measure this using the
bit error rate-cumulative distribution function (BER-CDF) first
proposed in [15]. Instead of being a simple average, like the
BER, the BER-CDF takes into account the full distribution of
possible error values. For a given δ, the BER-CDF measures

Pr(P̂b > 0.5− δ) (3)

at a given SNR value. For the purpose of this paper, and
without loss of generality, we will fix δ at 0.05 and consider
a message secure if the BER-CDF is greater than 0.99.

The SNR above which the BER drops below 10−4 is called
SNRB,min, and the SNR below which the BER-CDF is above
0.99 is SNRE,max. The difference between these two points in
dB is called the security gap Sg . Note that this is different from
the security gap in [16], which uses BER for both reliability
and security. We would like to minimize the security gap,
thus reducing the necessary advantage. However, we would
also like the freedom to adjust SNRB,min to adapt to the
instantaneous conditions of Bob’s channel.

C. Transmission Scheme

The system model in Fig. 1 is a general model. Our analysis
uses the ICSHK scheme presented in [15]. An overview of the
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Fig. 2. Block diagram of interleaved coding for secrecy with a hidden key
wireless transmission scheme.

scheme is illustrated in Fig. 2. The input is a length k message,
Mk. The message is interleaved according to a random key K,
producing the interleaved message Mi. K is then appended
to Mi and this combination is encoded using a systematic
inner code Ci. We use an low-density parity-check (LDPC)
code [17]. This generates parity bits, Pb. After encoding, K is
removed from the message, and only Xn =

[
Mi Pb

]
is sent

to the modulator. The modulated signal Xn′

m is then transmitted
through the channel. Y n′

m is received at the decoder. This is
processed by a soft demodulator to output Y n

e . A soft decoder
for Ci extracts an estimate of the key K̇, which is used to
deinterleave the estimate of the interleaved message Ṁ i to
output the decoded message M̂k. It is assumed that Eve does
something similar to produce her estimate, M̃k.

III. IRREGULAR QAM CONSTELLATION

While a transmission scheme might achieve a narrow se-
curity gap at its nominal level, as conditions improve, any
security guarantees are lost. It is often impossible to measure
Eve’s SNR, and so we would like to adjust SNRB,min to the
highest possible value to ensure security against the widest
range of SNR values for Eve. We achieve this by adopting
an adaptive modulation scheme called irregular QAM, which
offers us greater control over the SNR required to decode
the message. We refer to the constellations for this adaptive
modulation scheme as irregular due to the fact that spacing
between adjacent points is not constant.
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A. Irregular 16-QAM

For the case of 16-QAM, an irregular constellation can be
described by the ordered pair (X0, X1), such that each point
has a value of either ±X0 or ±X1 in both the I and Q axes.
Fig. 3 shows an arbitrary irregular 16-QAM constellation, with
the distance d = X1 −X0 marked. For our experiments, we
fixed X0 and altered X1. This had the overall effect of com-
pacting the points within each quadrant, while also increasing
the relative distance between quadrants. This increases the
BER for a given SNR. This can be seen by computing an
error bound for each symbol. As described in [18], an upper
bound on the average symbol error probability in an arbitrary
constellation is given by

P (E) ≤ 1

S

S−1∑
m=0

S−1∑
n=0,n̸=m

Pr(ŝ = sn|sm), (4)

where S is the modulation order and Pr(ŝ = sn|sm) is the
probability that received symbol ŝ is decoded as sn given that
sm was sent. That probability is given by

Pr(ŝ = sn|sm) = Q

√
d2m,n

2N0

 , (5)

with dm,n being the Euclidean distance between points m and
n in the I/Q plane, and N0 the single-sided noise spectral
density. Using the above equations, we can fine-tune the error
rate of a constellation by adjusting the distances between adja-
cent symbols. For each symbol in the 16-QAM constellation,
errors from the three adjacent symbols account for the majority
of probable error. This makes sense as errors at high SNR
are generally caused by the closest relative symbols [18]. At
reliable SNR levels the contributions of the 12 smallest terms
to the overall error rate is negligible, and so the error can be
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Fig. 4. Security gap (Sg) as a function of spacing (d) for various irregular
16-QAM constellations with the ICSHK scheme.

well approximated by only three terms. This simplified error
equation is given by

P (E) = 2Q

√
d2

2N0

+Q

√
2d2

2N0

 . (6)

Notice that these terms depend only on the difference between
X1 and X0, but not the explicit values of these variables. The
error performance of an irregular constellation depends almost
exclusively on the spacing within each quadrant.

The above analysis focuses on the constellation, but it is
important to see the effect when combined with the ICSHK
scheme. Monte Carlo simulations show that changing the
spacing d, has no significant effect on the security gap. It
can be seen that the security gap Sg remains approximately
equal for all spacings, as shown in Fig. 4. Although the
security gap stays consistent, the values of SNRB,min and
SNRE,max change exponentially as we decrease d. Fig. 5
shows the BER curves for various constellation spacings,
which illustrate the consistent shape and exponential difference
between successive values of d. The best fit line measuring
SNRB,min as a function of d for our results is given by

SNRB,min = 40.5e−.865d. (7)

While we used the spacing d as the independent variable in
our simulations, it is more useful to calculate what spacing
to use for a given SNRB,min. Then, a measurement could
be made of the current SNR between the transmitter and
authorized receiver, and the optimal constellation spacing
could be calculated. That relationship is the inverse of (7)
which is

d = −.865 ln(SNRB,min/40.5). (8)

We also include a graph showing the BER-CDF curve for
each value of d as Fig. 6. As with the BER, it is evident from
this graph that the slope is unaffected by the spacing, but
the SNR values are increased exponentially with decreasing d.
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Fig. 5. Bit error rate (BER) curves for various spacings (d) of irregular
16-QAM constellations with ICSHK scheme.
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Fig. 6. BER-CDF with δ = .05 for various spacings (d) of irregular 16-QAM
constellations with ICSHK scheme.

B. Irregular 64-QAM

Although 16-QAM can be adjusted to any SNR value above
its nominal value, it makes more sense to switch to 64-
QAM once the SNR is high enough to support it. Due to
the greater number of points, there are more options for how
to alter the 64-QAM constellation. We denote a constellation
as (X0, X1, X2, X3) and every point takes one of these four
values in both the I and Q axis. While there are many ways to
distort this constellation, we focused solely on two, which we
name the quadrant and box methods. The quadrant method
fixes X3 and shifts all other values closer to it. This is
analogous to the irregular 16-QAM constellation in that it
groups together each quadrant, while increasing the separation
between quadrants, as is shown in Fig. 7. The box method
fixes x0 and X3, and moves the inner values out in opposite
directions, x1 towards X0 and X2 towards X3. This is novel to
the larger constellation and has the overall effect of grouping
together every cluster of four points, while increasing the
separation between these clusters or boxes, as shown in Fig. 8.

X0X1X2X3 I

Q

Fig. 7. Constellation diagram of irregular 64-QAM using quadrant method.

X0 X1 X2X3 I

Q

Fig. 8. Constellation diagram of irregular 64-QAM using box method.

Both methods allow for the same kind of control as with the
16-QAM constellation, although each method has a slightly
different SNR to spacing relationship.

IV. IRREGULAR QAM WITH COSET CODING

A. Encoding

The above analysis assumes straight-forward digital mod-
ulation, where four or eight bits from Mk′

e map to a con-
stellation symbol for 16-QAM or 64-QAM, respectively. The
security gap can be further reduced by overlaying a coset
code (often called a wiretap code [5], [19]) onto the QAM
constellation. An (n′, k′) coset code splits all coded segments
of length k′ into 2k

′
cosets. A length k′ message selects one of

the cosets, and a random co-message selects one of the 2k
′−n′

codewords in that coset, which is then sent. Table I shows the
coset code we used. This code was shown to have the best
secrecy performance of any (4, 2) code in [20]. The randomly
generated co-message selects the column of the code table,
while the message chooses the row. Since the co-message has
nothing to do with the message, its only purpose is to provide
confusion to eavesdroppers.



Fig. 9. Security gap Sg as a function of spacing d for various irregular
16-QAM constellations overlaid with a (4, 2) coset code, with the ICSHK
scheme.

TABLE I
CODEBOOK STRUCTURE FOR A COSET-BASED SECRECY CODE.

?

Mk′

e Symbol labels
0 0000 1110 0111 1001
1 0001 1111 0110 1000
2 0010 1100 0101 1011
3 0100 1010 0011 1101

B. Soft Decoding

Normally, decoding a coset code is a simple process that
can be carried out by a matrix operation, a process which
generates hard bit values. This will not work for the ICSHK
scheme however, as the LDPC decoder requires log-likelihood
ratio (LLR) values, which represent the likelihood of a single
bit being either zero or one. The equation to calculate the LLR
for bit i is

LLRi = ln


∑

sk∈S0

exp(−|y − sk|2/σ2
Nz

)∑
sk∈S1

exp(−|y − sk|2/σ2
Nz

)

 (9)

where sk is a constellation symbol, S0 is the set of all
constellation symbols with a zero in the ith position, S1 is the
set of all constellation symbols with a one in the ith position,
y is the received symbol, and σ2

Nz
is the noise variance of

the channel. In order to use this decoding method with coset
coding, the decoder must know the symbol label to symbol
mapping as well as the coset code. There are two important
changes to the normal decoding process to adapt for coset
codes. First, there should only be LLR values generated for
coded segment bits, not for symbol label bits. This means
that for the (4, 2) code used previously, this equation would
only output two LLR values, not four. The second change is
the way in which S0 and S1 are chosen. S0 is the set of all
constellation symbols which are decoded to have a zero in the
ith coded segment bit and S1 is analogous. With these two
changes, (9) will generate the proper LLR values to feed into
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Fig. 10. BER for various spacings d for irregular 16-QAM constellations
overlaid with a (4, 2) coset code, with the ICSHK scheme.
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Fig. 11. BER-CDF for various spacings d for irregular 16-QAM constellations
overlaid with a (4, 2) coset code, with the ICSHK scheme.

the LDPC decoder and the scheme will benefit from the effects
of the coset discussed in the previous section.

C. Combining Coset with ICSHK

To add a coset code to the ICSHK scheme, the output of
the encoder in Fig. 1 is buffered, and then split into coded
segments of length k′. These messages are each combined
with a randomly generated co-message to produce a stream of
length n′ symbol labels, as in the example of Table I. Each
symbol label is mapped onto an irregular QAM symbol and
transmitted. In order to fully utilize the benefit of adding a
coset code, this mapping must be carefully chosen so that,
when the points in each quadrant are brought closer together,
the confusion on the coset code increases faster than errors
accumulate on the symbols. This means that small changes to
the constellation lead to disproportionately large increases in
the error rate, creating a sharper BER curve and a smaller
security gap. The best way to achieve this is to map one
symbol label from each coset onto a symbol in each quadrant.
For 16-QAM, this is trivial. For 64-QAM, care must be taken



as there are various coset code options. A (6, 4) code gives 16
cosets with 4 symbol labels each, so that the quadrant mapping
can be preserved. This is ideal for the quadrant method of
irregular 64-QAM. A (6, 2) code has 4 cosets, and the box
method may be preferred here so that one symbol from each
4-symbol box can be assigned to each coset. It should be noted
that for both 16- and 64-QAM, the addition of the coset code
reduces the rate. It is up to the designer whether it is preferable
to have a higher rate or a smaller security gap.

Fig. 9 shows the security gap for 16-QAM with the (4, 2)
code in Table I. Comparison to Fig. 4 shows that the security
gap has been reduced by the addition of the coset code. By
comparing Fig. 10 to Fig. 5, and Fig. 11 to 6, it can be seen
that adding the coset code also leads to a higher value for both
SNRB,min and SNRE,max for the same constellation spacing.

V. CONCLUSIONS AND FUTURE WORK

In order to adapt transmission schemes to a wider range of
SNR, we propose an irregular QAM constellation be added to
the process. Error bounding shows that decreasing the spacing
within each quadrant of an irregular constellation increases the
error rate, which leads to a higher required SNR to decode the
message. Simulations show that changing the spacing has no
significant impact on the security gap, meaning that security
can be guaranteed at any noise level. This security gap can
be further reduced by mapping a coset code onto the irregular
constellation for a new type of coded modulation, although
this comes at the expense of decreasing the rate of the code.
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