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Abstract—This paper presents a practical physical-layer se-
curity scheme based on coding methodologies combined with
self-jamming to combat advantaged eavesdroppers, i.e., eaves-
droppers that may possess an equal or even better channel than
the legitimate receiver. We introduce a strengthened security
gap notion, where reliability is assured by typical bit-error rate
(BER) measurements, but secrecy is guaranteed by considering
the entire distribution of messages upon reception, instead of
average measures. Relying on this new security gap notion, we
then propose a scheme that combines concatenated coding with
self-jamming by the legitimate receiver for effective security and
reliability even when eavesdroppers possess a channel with equal
or better conditions than the legitimate receiver.

Index Terms—physical-layer security, self-jamming, adaptive
filtering

I. INTRODUCTION

Physical-layer security (PLS) is a growing field that focuses
on taking advantage of certain physical characteristics of a
channel to securely transmit data. After Shannon proved the
impracticality of the one-time pad, researchers have sought
additional, improved methods of security [1]. In 1975, Wyner
introduced the wiretap channel, in which an intended receiver
(Bob), communicating with a legitimate transmitter (Alice),
can guarantee secrecy over an eavesdropper (Eve) provided
that he has an advantage over the eavesdropper [2]. More
recent developments have been surveyed in [3], [4], [5], [6].
Although many of these follow a more theoretical approach
(resorting to information-theoretic metrics such as strong,
weak and semantic secrecy), attractiveness to practicality
within PLS grows with the increasing pervasiveness of wire-
less communication systems [3]. This stresses the development
of practical coding for secrecy schemes, and new practical se-
curity metrics capable of providing approximate information-
theoretic security based on Monte-Carlo simulation measures
[7]. This paper presents new contributions on both topics, and
lays the basis for further research of practical coding schemes
for secrecy employing full-duplex jamming.
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A problem that was outlined in PLS after the introduction
of the wiretap channel is the need for a tight security gap S,
between the legitimate receiver and the eavesdropper [8], [9].
If S, is small enough, and Bob has even a slight advantage
over Eve, then secure communications can be achieved. The
security gap is a practical security metric usually defined as

S, = SNR'Z) _ SNR(E)  (dB) (1)
where SNREHB;),L is the minimum signal-to-noise ratio (SNR)

above which Bob must operate to guarantee a bit-error rate
(BER) below some reliability threshold (e.g., 107), and
SNRgfa)x is the maximum SNR for which Eve experiences
BER =~ 0.5, which is defined as the security threshold.

It is well known that high bit error rates and small security
gaps fall well short of information-theoretic security guaran-
tees [10], [7], but this does not necessarily render them useless.
Considering only average BER may be dangerous, however,
since the BER does not measure the correlation between
signals. In this paper, we propose a new approach to the
security gap that can strengthen security guarantees. Instead of
using BER, the full probabilistic distribution of the messages
upon reception is analyzed. Assuming there exists a practical
coding scheme such that when SNR < SNRsfa)z, the result is
that all possible messages are received with equal probability
independent of the one transmitted, then the communication
can be considered secure. This idea is depicted in Fig. 1 and
will be developed more in Section II where Kullback-Leibler
(KL) divergence is used to fill the gap between practical
secrecy and information-theoretic security.

The second contribution of this paper relates to the use of
full-duplex jamming to enable very small, or even negative
security gaps in practical coding schemes. Some existing
schemes can already deliver small positive security gaps,
e.g., interleaved and scrambled coding for secrecy schemes
with hidden keys (ICSHK and SCSHK) [10], [11]. These
schemes rely on the generation of a unique random interleav-
ing/scrambling key that is used to shuffle a single message.
The shuffled message and the key are then encoded together
using a systematic error correcting code. The key is then re-
moved/punctured (hidden) before transmission, which prevents
an eavesdropper with a poor channel from obtaining/decoding
the original information, but allows a legitimate receiver with a
small advantage in signal quality to recover the message. More



recently a three-stage encoding scheme has been proposed
[12], formed by the concatenation of a 1st-stage coset code [2],
[13] with an ICSHK/SCSHK scheme! that approximates, upon
decoding, a noiseless channel for Bob and a binary symmetric
channel (BSC) for Eve between the output of the secrecy
coder and the input of the corresponding secrecy decoder.
The main limiting factor in most practical coding schemes
is their inability to adapt, and thus, security and reliability are
essentially hard-coded into the design with the choice of code
parameters.

Recently, research in full-duplex jamming has been investi-
gated using different methods such as those presented in [14],
[15], [16] to provide secure wireless communications, and
the adaptive digital self-interference cancellation technique
applied in [17] shows the feasibility of full-duplex jamming.
Furthermore, in [18] full-duplex self-jamming was employed
to provide secure communications. The paper used pilot sym-
bols known only to the legitimate receiver to estimate the
self-interference channel and then remove it. Also, in [19],
[20] full-duplex jamming and relaying has been investigated
to improve secrecy and ensure reliability to the legitimate user,
even for the case with an untrustworthy relay [20].

In this work, we aim to achieve smaller and more meaning-
ful security gaps in practical secrecy coding schemes by resort-
ing to a full-duplex jamming technique, where Bob acts as a
jammer (self-jamming) while receiving Alice’s transmission in
tandem. The goal is to enable secure and reliable operation,
even when Eve’s channel is better than Bob’s channel [21].
Since Bob controls the jamming power, he can also adjust to
maximize security against Eve. Without loss of generalization,
the three-stage encoding scheme for secrecy [12] is used in
combination with full-duplex jamming for validation of the
proposed approach, while also stressing the usefulness of the
new security gap definition.

The remainder of the paper is organized as follows. Section
IT presents a new security gap metric that operates on KL
divergence, and Section III gives background information on
a previously invented scheme over which new ideas may be
tested. Section IV introduces the system model for the paper,
and self jamming at the receiver is highlighted as a means to
secure transmitted information in Section V. An experimental
setup of the scheme and results are given in Section VI, and
Section VII concludes the paper and offers ideas for future
work.

II. NEW SECURITY GAP

Let M signify a secret message that Alice wishes to
communicate to Bob. Alice codes the message and forms X" a
length-n codeword, which she transmits wirelessly to Bob, and
Eve eavesdrops. Bob and Eve receive Y™ and Z", respectively,
and attempt to decode the message. The decoder outputs for
Bob and Eve are M and M, respectively. We assume that the
messages are chosen uniformly at random from the message

IThe random interleaving/scrambling constitutes the 2nd stage, while the
encoding with a systematic linear code followed by puncturing corresponds
to the 3rd stage.

alphabet M, and that Bob and Eves’ decoders make hard
decisions over the same alphabet.

We take the approach of [12] in measuring the secrecy
of a practical coding scheme using the KL divergence. The
KL divergence calculates a sort of a “distance” between two
probability distributions, and can be used to evaluate statistical
independence. The KL divergence between ppsa(m,a) and
prm(m)pa(a) is given by

PMmA
D(parallpypa) = > Y pualog, )]

meM acA bumpa
which  approaches zero as ppra(m,a) approaches
py(m)pa(a). Recall that the two distributions are

equivalent if and only if M and A are independent,
and D(papallpmpa) = L(M;A). If we set A to the
eavesdropper’s observation Z", then we are working with a
notion similar to strong information-theoretic security. The
main difference is that we do not consider an asymptotic
analysis as blocklength of an encoder gets large. For practical
schemes over real-world channels, setting A = Z" does not
tend to yield useful results, however, due to its difficulty to
analyze [12]. In this paper, we set A = M. As long as Eve
deploys best-practice decoding, meaningful security claims
can still be made.

For practical coding schemes, an accurate estimation of KL
divergence can be obtained from performing extensive Monte-
Carlo simulations when | M| is small. Subsequent investigation
of the joint probability distribution of messages and decoded
messages [22], [12], thus enables a security analysis that is
information-theoretic, although not identical to the traditional
analysis of past information-theoretic security works.

The new security gap operates on D(parallparpa), or
equivalently p7,,(m|m) when A = M. Note that we can
write the divergence so that

Purin
D(pyyillpvpiy) = Y Y PP logy 7‘ 3)
meM meM Py

When messages are assumed to be equally likely and channels
are symmetric, then both py;(m) and p,; () are uniform
distributions over the same message space. If py ,/(m|m)
is also uniform for all m in the message alphabet, then
the divergence is exactly zero, and no information about the
message can be learned through M. Fig. 1 illustrates the new
approach to defining a security gap with reference to this
conditional distribution. We define our new lower security gap
threshold to be the highest E,/Ny in Eve’s reception such that

D(ppsarllpapyy) < B, 4)

where [ is a small number chosen by the system designer.
(Ey /No)s,lfa)gE marks the edge of the secure zone for Eve, as
shown in Fig 1. The new upper security gap threshold is
similarly defined as the lowest E} /N, in Bob’s reception such
that

]D)(pMMHpMpM) ~ 6, (5)
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Fig. 1: The reliable zone shows where, with a high probability,
messages received can be decoded correctly. The uniform region
is where all possible messages are decoded uniformly no matter
the transmitted message. The difference (measured in Ep/N, dB)
between the reliable zone in the legitimate receiver’s curve and the
uniform region in the eavesdropper’s curve (sometimes the same
curve as in this figure) is defined as the new security gap.

where ¢ is approximately H(M). (E; /No)gfi)n marks the edge
of the reliable zone for Bob. Note that, (5) corresponds in
practice to a region of very low BER, thus instead BER
measures can still be used to set up the reliability threshold
(Ey/No)'B)  Then

min’

Sy = (Ey/No)'B) — (E,/No)\E), dB. (6)

III. BACKGROUND ON THE THREE-STAGE ENCODING
SCHEME FOR SECRECY

This section presents the basic principles of the three-stage
encoding scheme for secrecy proposed in [12]. This encoding
scheme is formed by the concatenation of a coset-based
code for secrecy [2], [13], with an ICSHK/SCSHK encoder
[23], [10], [11]. The coset-based code can be optimized to
guarantee information-theoretic security over a BSC, while the
ICSHK/SCSHK technique, coupled with a Gaussian channel,
generates an equivalent BSC for Eve, and an effectively
noiseless channel for Bob [12].

A. Coset-based secrecy coding

The encoding procedure of an (nq, k) coset-based code for
secrecy can be described as follows. The encoder is given as

PR [g} , ™

where m € M = {1,2,...,2F} (but converted into binary),
m/ is a randomly chosen binary vector of length (ny — k), G
is the generator matrix of an (n;,n; — k) linear block code

C?*} has full rank in GF(2). The

cosets of C are (C1,Ca, ..., Car ), where C = C. The encoding
operation in (7) allows m to choose the coset, and m’ to choose
a random codeword from the coset. Thus, the encoding process

C, and G* is chosen so that

TABLE I: Codebook structure for a (4, 2) coset-based secrecy code.

Ml
M 0 1 2 3
0 0000 0011 1100 1111
1 0001 0010 1101 1110
2 1000 1011 0100  O111
3 1001 1010 0101 0110

of a given message involves simply choosing at random a
codeword from its corresponding coset and transmitting it as
", If 2™ is a degraded version of ™! to the extent that
there are enough flipped or erased bits of the message, Eve
cannot reliably decode and recover the message m. Consider
the example of a half-rate coset-based code of length n; =4
presented in Table 1. Say the message m = 3 is encoded and
sent by Alice as the codeword ™ = {0101}. If Eve receives
the message as 2" = {7101}, she is confused as to whether
the original message was m = 3 or m = 4, as both {0101}
and {1101} are options for decoding her received message and
they are found in different cosets. Likewise, if Eve receives
zZ™ = {7107}, she has no information about which message
was sent, since a viable option is found in each of the four
cosets.

B. ICSHK/SCSHK coding

The encoding procedure of an (n,n;) ICSHK/SCSHK
code can be described as follows. Per each input to the
encoder ™', a random interleaving/scrambling key K of
length n; bits is generated. This key is used to shuffle
the bits of ™!, yielding ', which can be described as
&7t = 2™ xSy, where Sy (k) stands for an (n; x np) bit
interleaving/scrambling matrix, which is a function of K. The
key and the shuffled message are concatenated, and encoded
with an (n -+ ng,ny +ny) linear systematic code C’, resulting
into an (n + ny)-length codeword "™ = [K™  &'']| G/,
where G’ is the (n1 +ny) xn generator matrix of C’. The final
encoding step, corresponds to puncturing the key, resulting in
the final codeword 2" = &" 1" P, where P is a (n + ng)xn
puncturing matrix. Therefore, the only knowledge about K in
the transmitted data is encoded indirectly into the parity bits
of ™.

Upon decoding the procedure is reversed, with unknown
values being set at the position of the punctured bits?. While
soft-decoding can be carried upon decoding code C’, a hard
decision must be taken on the bits at this code’s decoder
output. This is true because an estimate of the key K is needed
to deinterleave/unscramble the decoded message. It has been
shown in [12] that when carrying transmission on the additive
white Gaussian noise (AWGN) channel, the full chain from
the input of ICSHK/SCSHK encoder to the decoder output
can be modeled as a BSC.

IV. SYSTEM MODEL
The top-level system model shown in Fig. 2 resembles
a wiretap channel model. The transmitter Alice selects a

2Each unknown value is usually set to a zero log-likelihood ratio when
soft-decoding is employed.
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Fig. 2: System setup of an 3-stage encoder for secrecy with hidden
key enhanced by the use of full-duplex jamming.

message m € (1,2,...,2%) with & number of message bits
to pass through the three-stage encoder. After encoding the
message, the length-n set of codewords X" are sent through
an additive white gaussian noise (AWGN) channel.

The legitimate receiver, Bob, obtains Y™ 4 J" whereas
the eavesdropper, Eve, receives Z™ + J". The jamming noise
J™ comes from Bob’s transmitting antenna as an attempt to
secure communications between Alice and Bob. The jamming
transmitted provides a rise in the noise floor whereby Bob
can obtain an advantage over Eve. The jamming noise contin-
uously runs as long as Alice is transmitting the message.

We assume that Bob and Eve have equal computation
capabilities, and both are equipped with a single receiving
antenna. Further we assume that Eve’s location is close enough
to Bob that jamming significantly affects her. After Bob and
Eve receive the message they try to recover X as closely as
possible. They both apply noise estimation/cancellation signal
processing techniques to get rid of the AWGN from the signals
added by the channel and to synchronize their receivers to the
messages obtained. However, the AWGN jamming forces a
difference in the technique that Bob and Eve can use to regain
an approximation on X". Bob uses a normalized least-mean
squares (NLMS) adaptive filter to filter out his self generated
jamming noise. Bob can use the NLMS filter because he has
a reference jamming signal on which he can use to make an
estimate on the jamming signal coming from his transmitting
antenna. Real radio systems have used stochastic gradient
descent algorithms to remove noise [24].

Eve has no reference signal like Bob since we assume Eve
has one antenna. Therefore, this forces Eve to investigate other
possible anti-jamming or filtering techniques. In our system
model, we allow both Bob and Eve to apply the best practice
decoder in their attempt to recover an approximation on the
message.

V. FULL-DUPLEX JAMMING

Self-jamming has been tried on real radio systems to achieve
secure communications [25]. We use a white Gaussian noise
signal to jam because it is known to be the most penalizing
jamming signal to a receiver [26]. Since the true commu-
nications channel also contributed AWGN, the effect of the
jamming is to simply reduce the SNR at any receiver that
does not have knowledge of the jamming signal [27].

There are many methods by which Bob could jam and
all have trade-offs between conserving power and confusing
Eve [28]. In this paper, for a matter of clarity on the principal
of self-jamming, Bob employs a continuous jammer as Alice
transmits. Then Eve’s effective SNR is

Ey,

(No +02)’
where Ej, is the energy per bit, N, is the noise spectral density
and o is the jammer’s total instantaneous power, all measured
at Eve’s receiver. Thus, the jamming power o2 governs Eve’s

operating SNR along with the noise in the eavesdropper’s
channel [27].

®)

A. Normalized Least-Mean Squares Filtering

Bob needs to estimate the transmitted jamming signal so that
he can eliminate self-interference to ensure that he can reliably
obtain Alice’s message. We choose the NLMS technique to
adaptively filter out the jamming noise because of Bob’s
knowledge of his self-generated signal. In practice, he cannot
just simply subtract out the jamming because he will receive a
signal with high correlation to the jamming noise that differs
due to imperfections in the transmitting antenna.

The NLMS [29] filter is an adaptive filter that can deter-
mine the optimum filter coefficients to eliminate the jamming
noise due to the fact that Bob has a reference with which
to determine the optimal coefficients. The adaptive NLMS
filter obtains the optimal filter coefficients by approximating
the optimum Wiener-Hopf solution and the derivation shown
in [30].

First, the signal Y™ is filtered to produce Y”, and the
estimation error is calculated at time u by

ey = Ju — Yu, &)

where j, is Bob’s self-jamming signal at time u. The filter
coefficients are then adapted to minimize the error signal E
in the normalized least-mean square sense. As this occurs, the
filter’s characteristics change until the output signal is nearly
devoid of the jamming signal altogether. Bob must select a
step-size p to govern the speed of the adaptation in the usual
way [30]. Eve cannot use the NLMS algorithm because she
lacks a priori knowledge of J.

VI. EVALUATION
A. Experiment Setup

A (7,4) Hamming code provides the generator matrix for
our coset-based secrecy encoder, while the ICSHK employs
a (1536, 1280) LDPC code from the WiMAX standard [31],
and considers a random key of ng = 100 bits, producing
codewords X" (see Fig. 2) of length 1436 bits after punc-
turing. Secrecy codewords at the output of coset-based code
are buffered in order to provide proper input to the ICSHK
coder. The resulting binary string is then sent over the AWGN
channel.

While receiving messages, Bob transmits a continuous jam-
ming signal. Different Gaussian variances are used in separate



simulations to represent the various levels of instantaneous
power employed by the jammer. Bob implements NLMS
filtering to cancel out jamming Gaussian noise interference.
The five tap NLMS filter uses a variable step-size of 0.04 and
0.005 to obtain a fast yet stable approximation of its optimal
filter coefficients.

B. Results

Before the results of the new security gap experiment can be
presented, it is important that several quantities are expounded
upon. In the experiments that follow, SN Rgfi)n refers to the
SNR at the point which the minimum amount of reliability
required by Bob is met. The minimum reliability will be rep-
resented by the probability PM| m—s(m) > 0.99. The SNR at
which the minimum level of security is met will be represented
by the quantity SN Rﬁfji The minimum level of security will
be represented by the probability Py ,,_5(rz) < 0.14 and
PM‘M:i(ﬁz) ~ 0.12 for i # 5.

The three-stage scheme presented in [12] performs well
and assumes that the eavesdropper uses a best-practice de-
coder. Fig. 3a, provided in the results of [12], shows a steep
probability change when Ej/N, goes from 6.5 dB to 8 dB.
The security gap here is the minimum amount of difference
between E}, /N, required to guarantee the Bob’s security over
Eve. A security gap of 2.5 dB exists at this range because if
operating at 8 dB, Bob can obtain the correct message with
Pt M=5 (m) > 0.99. However, if Eve operates at 6.5 dB, she
can obtain the correct message with only p ;5 (m) < «
where « is a very small number. Note that if both Bob and
Eve operate at the same Ej,/N, then there does not exist a
security gap.

The probability of the receiver’s approximated message
being the same as the transmitted message is the same for
Bob and Eve when no jamming signal is transmitted. Fig. 3b
shows the resulting graph for Bob. Eve’s graph is not shown,
as it is virtually indistinguishable from Bob’s. Thus, if the
SNR is the same for both Eve’s channel and Bob’s channels,
and no jamming transmission is sent by Bob, then they will
be able to recover the same amount of information about the
sent message.

Fig. 4 shows the results of jammer transmitting from a
Gaussian distribution with a variance of 02 = é Scanning
the % range of O dB to 12 dB, it can be seen in Eve’s
probability curve in Fig. 4b (and verified in simulation results)
that SN Rﬁfgz ~ 6.8 dB. Based on Bob’s probability curve in
Fig. 4a, SN Rff;)n ~ 11 dB. According to equation (1), the
security gap of this transmission is therefore S, = 4.2 dB,
that is, Bob’s SNR must be at least 4.2 dB higher than Eve’s
in order to achieve reliable communication and give Eve a very
low chance of decoding the message correctly. Fig. 5 shows the
results when the continuous jammer doubles its power from %
to . Eve’s probability curve shows that SN R\E) ~ 8.4 dB.
Based on Bob’s probability curve in Fig. 4a, SN Rgfi)n ~ 11
dB. Thus, the security gap of this transmission is S; = 2.6
dB, that is, Bob’s SNR must be at least 2.6 dB higher than
Eve’s to achieve the reliability and security goals.

In Fig. 6, the jamming power of a transmission is again
doubled to L. The secrecy threshold is SN RE) > 12 dB.

8 max
The reliability threshold is SNR'®) ~ 11 dB. So, in this case,
the security gap S; < —1 dB. This is a very interesting result,
because it indicates that even if Eve has a betfer location to
listen from, Bob can still receive his message reliably while a
level of information-theoretic security is leveled against Eve.

It can be seen that the security gap decreases as Bob
increases the power of his jamming transmissions. In Fig. 7,
this relationship is shown. The new security gap is plotted
with respect to the jamming power. Thus, using full-duplex
jamming, Bob is able to create a significant advantage over
Eve in terms of channel reliability.

As shown in [12], D(p(m,m)||p(m)p(m)) — 0 indicates
no information leakage which happens when the probability
curves tends to uniformity in the messages. The results show
that with continuous self-jamming Bob can cause Eve to have
a KL divergence that approaches zero faster than himself as
seen in Fig. 5. The rapid decrease in receiving the correct
message on Eve’s end occurs from 12 dB to 8 dB. Whereas,
for Bob the decrease occurs from 12 dB to 5 dB. Bob due to
his NLMS adaptive filtering can operate at a near equal amount
of £v ranges independent of the jamming powers observed in

N? .
the simulations.

VII. CONCLUSION

In this paper, we present a new stronger security gap based
on information-theoretic concepts, while assuming knowledge
of Eve’s decoder. Self-jamming with NLMS adaptive filtering
is also shown to decrease the security gap for practical coding
schemes over the Gaussian wiretap channel, like the three-
stage coding scheme in [12]. Future work will address addi-
tional steps that can be taken by Eve to combat the jamming,
such as blind source separation algorithms.
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