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Abstract—Index Modulation (IM) is a technique that acti-
vate k out of n subcarriers of an OFDM symbol to transmit
p1 = blog2

(
n
k

)
c bits in symbol’s indexes. Since both the symbol’s

spectrum width and transmission air-time duration remain the
same, OFDM-IM outperforms OFDM’s Spectral Efficiency (SE)
for larger values of

(
n
k

)
. However, OFDM-IM requires an extra

step called Index Selector (IxS) which takes Tα time units to
map a given p1-bit input to its corresponding pattern of active
subcarriers. This extra overhead virtually enlarges the symbol
duration, which is not captured by the classic SE definition. To
fulfill this gap, in this work we present the Spectro-Computational
Efficiency (SCE) metric. SCE parameterizes either the absolute
runtime of Tα on a reference hardware or its computational
complexity Tα(n, k) as function of n and k. Based on SCE, we
present theoretical case studies to identify the asymptotic bounds
for Tα(n, k) across different choices of k. if Tα(n, n/2) is at most
linear on n the resulting overhead is asymptotically negligible and
IxS can handle an arbitrarily large OFDM symbol. Otherwise,
OFDM-IM’s SCE tends to zero regardless of the hardware
processor speed. Also, we situate the inflection-point values for
OFDM-IM’s SCE between

(
6
3

)
and

(
14
7

)
in some practical case

studies.
Index Terms—OFDM, Index Modulation, Spectral Efficiency,

Computational Complexity, Spectro-Computational Efficiency.

I. INTRODUCTION

Index modulation (IM) is a PHY layer technique that relies
on combinatorics to leverage the overall distinct waveform
realizations of an OFDM symbol. In classical N -subcarrier
OFDM, each particular subcarrier is independently modulated
by an M -point constellation diagram. The IM principle adds
a novel configuration parameter k < N to OFDM, which
stands for the number of subcarriers that must be ‘active’
in a symbol. Combinatorial theory tells us that there exist(
N
k

)
= N !/(k!(N − k)!) ways to activate k out of N subcarri-

ers. Each of these resulting subcarrier activation pattern (SAP)
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can be used to transmit p1 = blog2

(
N
k

)
c bits. This way, the

successful demodulation of those p1 bits does not depend on
the waveform of the active subcarriers but only on the correct
detection of the ON/OFF status of all N subcarriers.

First attempts to apply the IM principle for OFDM date back
to the 90s [1]. However, the computational complexity to map
and detect the possible SAPs of a typical standard OFDM
symbol may be unfeasible in practice. A landmark answer to
this limitation was accomplished with OFDM-IM [2]. Instead
of applying IM to the entire N -subcarrier symbol, OFDM-IM
subdivides it into G smaller subblocks, each consisted of n =
bN/Gc subcarriers. This way each subblock is independently
modulated with p1 = blog2

(
n
k

)
c bits, and the detection search

space decreases. Despite that reduction, an optimal detector
still has to iterate across a combinatorial search space on n
and k. To overcome that, the authors present a detector that
selects the k strongest received subcarriers as active and sets
the remaining n − k as inactive. Because the strategy avoids
checking all SAPs to save time it is sub-optimal. However, the
authors reported several n and k values under which OFDM-
IM outperforms the bit-error rate (BER) of OFDM under the
same asymptotic computational complexity of detection.

A. Related Work

The subcarrier deactivation strategy of OFDM-IM has
shown to overcome OFDM when BPSK modulation is set
(i.e., M = 2) [3]. As M becomes larger, OFDM-IM sacrifices
log2M bits per deactivated subcarrier, so it is outperformed
by OFDM. To handle this problem, novel strategies have been
proposed on top of OFDM-IM to increase its waveform real-
izations. Fan et al. [4], [5], for instance, generalizes OFDM-
IM to support variable k per subblock. Mao et al. [6] present
the Dual-Mode (DM) OFDM-IM in which all subcarriers are
active. Thus, all n subcarriers send data individually. The
distinction between “ON” and “OFF” subcarriers happens in
a logical way by modulating them with specific constellation
sets. DM-OFDM-IM was generalized to support variable k
in [7]. Wen et al. [8] present the ‘Multiple Mode’ OFDM-IM
design in which the group of distinguishable constellations is
made arbitrary. This resembles a kind of DM-OFDM-IM in
which subcarriers can be classified into groups other than just



“ON” or “OFF”. MM-OFDM-IM is generalized for variable k
in [9]. All these proposals focus on achieving a good balance
between BER and detection computational complexity because
of the enlarged SAP space they achieve.

Although detection represents the major change IM de-
mands on classic OFDM [10], [11], it is not the unique.
The OFDM-IM family adds an extra step to the OFDM
transmission chain1 called Index Selector (Fig. 1). IxS changes
the original OFDM signal constellation mapper, which is
responsible to generate the N complex constellation points
that modulate their N respective subcarriers. In particular, IxS
takes p1 bits as input and returns the k subcarriers indexes
that must be active in a subblock. Each active subcarrier can
be individually modulated by an M -size constellation yielding
more p2 = k log2M bits. This is illustrated in Fig. 1 assuming
one subblock, i.e., G = 1 and n = N . For small waveform
realizations, the IxS task can be efficiently performed in
O(1) time by means of an

(
n
k

)
-entry Look-Up Table (LUT).

However, LUTs growth becomes prohibitive for larger values
of n and k.

To avoid storing all
(
n
k

)
SAPs, OFDM-IM proposals [2]–[9],

[13], [14] rely on an online IxS to compute SAPs on-the-fly.
However, this is achieved at the penalty of an overhead not
present in classic OFDM, which may compromise the benefit
of OFDM-IM for larger values of n and k. Nonetheless, as far
as we know, no prior work concerns on studying this issue.

B. Our Contribution

In this work we present the Spectro-Computational Effi-
ciency (SCE) metric, a novel PHY layer performance indicator.
Following classical SE formula [12], OFDM-IM proposals
usually calculate SE as the ratio between bit rate to the
consumed spectrum. Since OFDM-IM symbols consume the
same amount of spectrum and (the over-the-air) time of
OFDM, prior OFDM-IM SE formulas focus only on reflecting
the total number of bits they manage to transmit in the
channel2. Besides these parameters, SCE also parameterizes
the computational complexity required to build the symbol.
SCE suits to evaluate PHY layer enhancements that demand
extra computational resources to improve bit rate of prior
designs. As illustrated in Fig. 1, this is the case of OFDM-IM
(with respect to OFDM) because of IxS. Our metric enables
one to answer whether the increase in the computational
complexity pays off for the extra bits achieved.

Based on SCE we present theoretical and practical case
studies. In our theoretical case study we identify the IxS
asymptotic bound across different formulas for k. In particular
for k = n/2 (the value that maximizes the number of
transmitted bits p1 [3]), our theoretical study shows that the
IxS’s computational complexity must be O(n) otherwise the
OFDM-IM’s SCE tends to zero for larger n and k. In other
words, the resulting runtime overhead does not pay off for
the OFDM-IM bit gain. By contrast, if the IxS’s complexity is

1please, for further details about the steps of an OFDM transmitter, refer
to DSP textbooks e.g. [12].

2Mao et al. [10] survey the SE formulas of several OFDM-IM proposals.

O(n), the resulting overhead is asymptotically negligible and
the OFDM-IM mapping can handle a single arbitrarily large
subblock. In our practical study we situate the best OFDM-IM
CSE between

(
6
3

)
and

(
14
7

)
.

The remainder of this work is organized as follows. In
Section II we present the SCE metric. In Section III we study
OFDM-IM’s SCE to identify the ideal asymptotic bounds for
the IxS’s computational complexity. We also present a theo-
retical case study based on a particular IxS algorithm adopted
by the IM literature. In Section IV we present a practical case
study to assess OFDM-IM’s SCE on real hardware. Finally, in
Section V we present conclusion and future directions.

II. THE SPECTRO-COMPUTATIONAL EFFICIENCY METRIC

The Spectral Efficiency (SE) is a popular metric to measure
the performance of a PHY layer design. In digital modulation
systems, SE (bits/seconds/Hertz) is usually defined as the
ratio between the bit rate R to the bandwidth W [12]. In
OFDM, R = BOFDM/TN , in which BOFDM and TN
are the number of bits in the N -subcarrier symbol and its
duration time, respectively. To combat multipath fading, the
lasts Tcp < TN time samples of the symbol are copied to
its beginning. This is the so-called Cyclic Prefix (CP), a.k.a.
inter-symbol Guard Interval (GI). Translated to the frequency
domain, Tcp corresponds to Ncp subcarriers, and the following
relationship holds Tcp = (Ncp/N)TN . Therefore, the overall
OFDM symbol duration enlarges to TOFDM = TN + Tcp
yielding the effective SE shown in Eq. 1.

SEOFDM =
(BOFDM/TOFDM )

W
(1)

=
BOFDM
N +Ncp

(2)

BOFDM = N log2(M) (3)

Considering the equality W = ∆fN (Hz), where ∆f stands
for inter-subcarrier space (Hz), the orthogonality condition
of OFDM, i.e. TN = 1/∆f (secs) and M -point modulation
(Eq. 3), Eq. 1 rewrites as Eq. 2.

Basar et al. [2] was the first to employ Eq. 2 to compare
OFDM and OFDM-IM performance. Ever since, the formula
has served as base for comparative studies between OFDM
and multicarrier IM proposals [2]. As one can observe in
Table III of the survey work [10], the significant change in
comparison to the OFDM SE formula is to reflect the bit gain
each respective IM proposal achieves with the IM technique.

A. Spectral Efficiency Revisited by Computational Overhead

Equation 2 measures SE assuming that both OFDM and
OFDM-IM symbols occupy the bandwidth W by the same
amount of time TN +Tcp. This is accurate if one assumes that
both proposals take the same time building their respective
symbols. By contrast, any extra computational step added to
the classic OFDM block diagram to transmit a larger quantity
BOFDM -IM of bits might impose a time delay Tα (sec) to
the start of the symbol transmission over-the-air. If Tα grows
proportionally to BOFDM -IM , the resulting overhead could



Fig. 1. OFDM-IM (bottom diagram) adds index selector (IxS) to the OFDM signal transmission path (upper diagram). IxS represents p1 = blog2

(n
k

)
c bits with

the activation of only k (out of n > k) subcarrier indexes. Assuming an M -point modulation, the active subcarriers transmit more p2 = k log2M bits. The
resulting IxS runtime overhead Tα grows on n and k but is not reflected in prior spectral efficiency (SE) metrics [10]. We propose the Spectro-Computational
efficiency metric (SCE) to discover theoretical asymptotic bounds under which Tα is negligible for a single arbitrarily large OFDM-IM subblock.

neutralize the expected SE improvement. Thus, one should
study the asymptotic relation between BOFDM -IM and Tα to
identify the region of effective SE gain of the novel proposal.

The classic SE formula does not concern on the impact
of Tα on SE. To fulfill this gap we present the Spectro-
Computational Efficiency (SCE) metric. Eq. 4 presents SCE
for an arbitrary PHY layer whose symbol transmits B bits
during TSYMBOL time units. Note that it is the same as for
SE unless by the parameter Tα.

SCE =
B/(TSYMBOL + Tα)

W
(4)

The corresponding SCE formula for a PHY layer that enhances
OFDM is readily obtained by adding Tα to Eq. 1. As with the
cyclic prefix, one can express Tα in the frequency domain
to write the CSE OFDM formula (Eq. 6) that corresponds to
Eq. 2. If Tα results from an extra procedure whose runtime
grows on N , then it can be expressed as function Nα of the
number of subcarriers. Nα represents the spectrum idleness
period imposed by Tα (Fig. 1).

SCEOFDM -FLAV OUR =
B/(TOFDM + Tα)

W
(5)

=
B

N +Ncp +Nα
(6)

The particular SCE for OFDM-IM is given in Eq. 7. The
number of bits BOFDM -IM (Eq. 8) considers an M -point
constellation for the modulation of the k active subcarriers
and that the symbol is divided into G n-subcarrier subblocks.
In Eq. 9, Nα is a function of n and k, which accounts for
spectrum resources of the subblocks.

SCEOFDM -IM =
BOFDM -IM

N(n, k)
(7)

BOFDM -IM = G

(
k log2M +

⌊
log2

(
n

k

)⌋)
(8)

N(n, k) = N +Ncp +Nα(n, k) (9)

B. How to Compare PHY Layer Designs with the SCE Metric?

For practical PHY layer comparative case studies Tα shall
model the exceeding absolute runtime a novel PHY layer
design requires to improve bit rate over its reference coun-
terpart. By ‘reference PHY layer design’ we mean that all
computational steps of OFDM are present in its enhanced
version. Thus Tα = 0 for the reference design. This means
that the SCE is equal to the classic spectral efficiency for
OFDM.

SCE enables one to identify whether the extra computational
overhead Tα is not asymptotically negligible. This may happen
if Tα grows proportionally to the claimed bit rate gain. For
example, in the practical case study of Section IV, we model
Tα as the mean runtime the OFDM-IM IxS step adds to the
OFDM reference design (in which IxS is not needed). In this
context, the amount of computational resources required by
IxS grows asymptotically over the number p1 = blog2

(
n
k

)
c

of bits mapped to the symbol indexes. Thus, the resulting
OFDM-IM performance can be affected by such computational
complexity. In Section III we evaluate the asymptotic SCE of
OFDM-IM considering the asymptotic complexity of different
implementations of IxS.

III. ASYMPTOTIC SPECTRO-COMPUTATIONAL EFFICIENCY
OF OFDM-IM

In OFDM-IM proposals, the subblock size parameter n can
represent a trade-off. On one hand, the number p1 of bits
modulated on the symbol indexes grows for larger n. On the
other hand, the IxS computational complexity to select the k
out of n indexes grows accordingly. This trade-off also impact
the signal detection procedure at the OFDM-IM receiver. How-
ever, previous works manage to provide OFDM-IM’s detection
with the same computational complexity of OFDM’s [10],
[11]. Differently from the detection step, classical OFDM does
not require IxS. Thus, IxS’s overhead is inherent to OFDM-



IM and is proportional to n and k. In face of that, prior work
recommend not to apply IM technique on all N subcarriers of
a symbol [2]. The survey work [11] suggests n to be set with
sizes of 2, 4, 6, 8, 32 or 64 subcarriers. As far as we know, no
prior work dedicates to study the impact of the IxS’s overhead
on the OFDM-IM performance.

A. Asymptotic Condition for the OFDM-IM Subblock Size

In this section we focus on a generic recommendation re-
garding the IxS trade-off, namely, what is the worst asymptotic
complexity Nα(n, k) of a particular IxS implementation that
pays off for the bit gain of OFDM-IM? To this end, we study
the asymptotic SCE growth of OFDM-IM (Eq. 7) having n
as the key variable. To reach the limit of the OFDM-IM SCE
performance, we do n→∞ assuming a single arbitrarily large
subblock, i.e., N = n and G = 1. This leads to our Lemma 1.

Lemma 1 (OFDM-IM Spectro-Computational Condition).
The index selector’s computational complexity Nα(n, k)
OFDM-IM adds to OFDM does not pay off for its bit ef-
ficiency BOFDM -IM unless the Spectro-Computational Effi-
ciency tends to a non-zero positive constant for an arbitrarily
large number of subcarriers n. Formally, OFDM-IM shall
satisfy inequality 10.

lim
N=n→∞

BOFDM -IM

N +Ncp +Nα(n, k)
> 0 (10)

Proof. If one gives up OFDM-IM in favor of OFDM, then
Nα(n, k) = 0 and the resulting SCE matches SE (Eq. 2).
Recalling that M is constant with respect to N and that
Ncp = N/c for some constant c > 0, the OFDM SCE limit is
larger than zero (inequality 11). Therefore, OFDM-IM cannot
outperform OFDM’s SCE unless the inequality 10 does hold.

lim
N→∞

O(N)

N +O(N) + 0
> 0 (11)

Aside from IxS, the other computational relevant step of
OFDM-IM with respect to OFDM is signal detection. If one
considers a detector with the same computational complexity
as that of the classical OFDM [10], [11], only IxS’s complexity
matters. In this context, inequality 11 becomes the necessary
and sufficient condition under which OFDM-IM outperforms
OFDM in terms of spectro(-computational) efficiency.

Lemma 1 is readily satisfied if one implements IxS as LUTs,
i.e. Nα(n, k) = Θ(1). However, if one defines ‘extra com-
putation resources’ as complexity of space rather than time,
Nα(n, k) = O(

(
n
k

)
). In this context, the inequality could not

be satisfied unless BOFDM -IM = Ω(
(
n
k

)
). The key condition

to check whether a given OFDM-IM implementation meets
Lemma 1 is the asymptotic relationship between Nα(n, k) and
BOFDM -IM . This leads to our Lemma 2.

Lemma 2 (OFDM-IM Index Selector Asymptotic
Bound). Lemma 1 cannot be satisfied unless
Nα(n, k) = O(BOFDM -IM ).

Proof. Recalling that Ncp = O(N), N = n (G = 1) and
log2M is constant, Ineq. 10 rewrites as Ineq. 12. If Nα(n, k)
grows faster than O(BOFDM -IM ) Ineq. 12 fails.

lim
n→∞

BOFDM -IM

n+O(n) +Nα(n, k)
> 0 (12)

B. What Should Be the IxS Computational Complexity?

Lemma 2 tells us that we can ‘look’ at BOFDM -IM to
identify the computational complexity IxS shall have in the
worst case. The order of growth of BOFDM -IM depends
on the asymptotic relationship between k and n. Assuming
k = n/2 = O(n), one can determine the value under which
BOFDM -IM is maximum [3]. Theorem 1 uses this assumption
to find out the asymptotic complexity under which the OFDM-
IM trade-off can be asymptotically solved.

Theorem 1 (OFDM-IM Free of the Index Selector Trade-Off).
If k = n/2, then the IxS computational complexity
Nα(n, k) shall be O(n), otherwise the OFDM-IM Spectro-
Computational Efficiency tends to zero for arbitrarily large
n.

Proof. From Lemma 2 with k = n/2 (and recalling Eq. 8),
one gets the relation 13.

(
n
n/2

)
is the so-called central bi-

nomial coefficient whose well-known asymptotic growth is
O(2n/

√
n) [15]. From this, one gets relation 14 so 15.

N
α

(n, n/2) = O

(
n/2 + log2

(
n

n/2

))
(13)

= O
(
n/2 + log2 (2n/

√
n)
)

(14)
= O (n/2 + n− 0.5 log2 n)

N
α

(n, n/2) = O (n) (15)

Theorem 1 tells us that hardware improvement has mi-
nor positive impact on the SCE asymptotic performance of
OFDM-IM if the IxS complexity is not O(n). Of course, one
may design an IxS hardware tailored for a given value of n
(e.g., Application Specific Integrated Circuit, ASIC). However,
to benefit from an arbitrarily large amount n of spectrum,
the OFDM-IM IxS complexity should be at most linear on
n. These conclusions cannot be derived from the classic SE
formula. In fact, since SE does not capture the computational
complexity, it predicts an increasing performance for OFDM-
IM for larger and larger n.

Theorem 1 can also serve as guide to identify ideal Nα(n, k)
for different choices of k. For instance, if one chooses k =

√
n

rather than the ideal k = n/2, we identify that Nα(n, k)
should be O(

√
n log2 n). This means that the IxS algorithm

complexity must be asymptotically faster (from O(n) to
O(
√
n log2 n)) to compensate for decreasing k from O(n) to

O(
√
n). Similarly, if one keeps k constant regardless of n

(i.e., k = Θ(1)), we verify that the IxS complexity must be
O(log2 n). Table I summarizes these recommendations.



TABLE I
REQUIRED ASYMPTOTIC BOUNDS FOR THE INDEX SELECTOR (IXS)

ACROSS DIFFERENT STRATEGIES FOR SETTING k.

Asymptotic formula
for k Required bound for the IxS

Computational ComplexityFormula Example
Θ(1) k = 4 O(log2 n)
Θ(
√
n) k = b

√
nc O(

√
n log2 n)

Θ(n) k = bn/2c O(n)

C. Theoretical Case Study: Combinadic algorithm

In this section we study the theoretical SCE of OFDM-
IM considering the “Combinadic” algorithm [16], [17]. In
particular, the implementation of [17] is usually (cross)cited by
the OFDM-IM literature as a way of implementing an online
IxS [2]–[7], [13], [14]3. The Combinadic algorithm relies on
the fact that each decimal number X in the integer range
[0,
(
n
k

)
− 1] has a unique representation (ck, · · · , c2, c1) in the

combinatorial number system [18] (Eq. 16). For OFDM-IM, X
represents the p1 input bits (in base-10) and the coefficients
ck > · · · > c2 > c1 ≥ 0 represent the indexes of the k
subcarriers that must be active in the subblock.

X =

(
ck
k

)
+ · · ·+

(
c2
2

)
+

(
c1
1

)
(16)

1) Combinadic functioning: The Combinadic algorithm is
shown in Fig. 2. Considering that n, k and X are input
parameters, the algorithm aims to find out the value for each
coefficient ci, i ∈ [1, k] such that the Eq. 16 holds. The
candidate values for the coefficients are 0, 1, · · · , n−1, which
represent the indexes of the n subcarriers. Of these values,
only k will be selected to determine which subcarriers must be
active. Starting from i = k until i = 1, the i-th iteration of the
outer loop in Fig. 2 determines the value for the i-th coefficient
ci, i ∈ [1, k]. Once the outer loop selects the coefficient to
be computed, the inner loop employs a greedy approach to
determine its value. In its first round, Combinadic determines
the value for ck. To this end, it assigns ck with the largest
candidate value n − 1 and checks whether

(
ck
k

)
< X holds.

If this logic test fails, the inner loop keeps decrementing ck
until the test passes. When this happens, X is decremented by(
ck
k

)
. Also, the largest candidate value for the next coefficient

ck−1 is determined considering that no two coefficients has
the same value and ck > ck−1. Then, the process repeats until
all remainder coefficients are determined.

2) Combinadic time complexity: In a particular worst-case
instance, the inner loop test fails for n − 1, n − 2, · · · , k in
the fist round. Thus ck is assigned to k− 1. This narrows the
list of candidates (for the remainder k− 1 coefficients) to the
values k− 2, k− 3, · · · , 1, 0 . In fact, since the combinatorial
number system ensures that all k coefficients are distinct and
that ck is the largest one, a candidate value that fails for ck can
be discarded for ck−1 and so on. Thus, after ck is determined,
there must be at least k−1 candidate values for the remainder

3the MM-OFDM-IM family employs a similar algorithm known as fac-
toradic [8], [9].

{X , k and n are input parameters. Array c is returned};
largestCandidate← n− 1;
for i = k downto 1 do
ci ← largestCandidate;
while

(
ci
i

)
> X do

ci ← ci − 1;
end while
X ← X −

(
ci
i

)
;

largestCandidate← ci − 1;
end for

Fig. 2. Asymptotic dominant code snippet of the Combinadic algorithm [16],
[17]. The input X is mapped into k coefficients ci (1 ≤ i ≤ k), each
representing a subcarrier index to be active in the symbol. Worst-case
complexity is O(nk), i.e. O(n2) for k = n/2.

k−1 coefficients. Because of this, there is only one logic test
per candidate value in the inner loop regardless of the number
of coefficients. Since there are n candidate values, the inner
loop takes O(n) time regardless of the outer loop. In each
test of the inner loop, Combinadic relies on the multiplicative
identity (Eq. 17) to compute the binomial coefficient value in
O(k) time. (

n

k

)
=

k∏
i=1

n− i+ 1

i
(17)

Therefore, the overall computational complexity of the Com-
binadic algorithm [17] is O(nk). Considering

(
n
n/2

)
, which

represents the largest binomial coefficient hence, the maximum
bit gain of OFDM-IM [3], the complexity becomes O(n2).

Because the Combinadic’s runtime complexity does not
meet our Theorem 1, the SCE gain resulted from hardware
improvement has negligible effect on OFDM-IM for sufficiently
large n. This is illustrated on Fig. 3 considering some illus-
trative hardware speedups that attenuate Combinadic runtime
by 200× and 300×, i.e., n2/200, n2/300, respectively. By
contrast, a hypothetical IxS implementation that meets our
theorem benefits from hardware improvement for all n. This
is illustrated on Fig. 3 assuming a slower speedup of 2×, i.e.,
n/2. The OFDM’s SE (Eq. 1) is also plotted across different
values of n. In Section IV we study Combinadic on a practical
case study to identify the inflection-point of OFDM-IM SCE
on different hardwares.

IV. PRACTICAL CASE STUDY

In this section, we present a practical case study to assess the
runtime IxS experiences across subblocks of different number
n of subcarriers. Then, by means of our SCE metric, we
identify the largest subblock size under which OFDM-IM
outperforms OFDM in terms SCE (Eq. 6). As far as we know,
no prior work concerns on the largest n for a real-hardware
case study. This can serve as the first reference for the setup
of OFDM-IM subblock size in future performance evaluation
works.

We consider Ncp = N/4 and the duration of a symbol
without cyclic prefix TN = 3.2µs in accordance with values
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on Table 21-5 of the IEEE 802.11 standard [19]. Since an
OFDM-IM transmitter requires the same computational steps
of the standard OFDM, except for the IxS task, we model
Tα (µs) as the mean IxS runtime. Therefore Tα = 0 for the
standard OFDM.

A. Methodology

To sample Tα, we measured the time taken by the ‘Com-
binadic’ algorithm for different values of n and k = n/2
(first column of Table II). We use the Stopwatch class of
C# to assess the loops inside the Combinadic implementation
of [17]4. We set k = n/2 and assume BSPK modulation of
active subcarriers (i.e., M = 2) to exploit the full capabil-
ity of the OFDM-IM technique [3]. In each execution, we
assigned our process with real-time priority and employed
kernel directives to allocate one CPU core exclusively for it.
We measure Tα on two distinct 64-bit CPUs, namely, Intel i7-
4500U and Intel i7-3770K with clock frequencies of 1.8 GHz
and 3.5 GHz, respectively. Along with core dedication, these
hardware configurations have been shown to meet the real-
time processing requisites of a typical OFDM Wi-Fi symbol
such as FFT, equalization and interleaving [20], [21]. This way
we check whether OFDM-IM outperforms OFDM under the
same processing power constraints.

We generate the input for Combinadic algorithm with the
Mersenne Twistter 19937 (MT) pseudo-random number gener-
ator [22]. We set up three independent instances of MT19937
with seeds 1973272912, 1822174485 and 1998078925 [23].
The three sampled Tα are averaged and forwarded to the
Akaroa-2 tool for statistical treatment [24]. Akaroa-2 deter-
mines the minimum number of samples required to produce
a steady-state mean estimation with a required precision. All
results have a relative error below 5% and confidence interval
(CI) of 95%. In all experiments the highest observed variance

4Combinadic is the method “Element” of this public implementation.
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Fig. 4. Mean runtime Tα of the Combinadic algorithm [17]. Values and
confidence interval length taken from Table II.

was below 10−3. Table II reports the mean IxS runtime (Tα)
for our setups with respective OFDM-IM SCEs. For each
runtime, the table also reports the half-width of the confidence
interval (δ), the number x of samples needed to achieve the
required precision and the number x∗ of discarded samples
before the system get at the steady-state. For the sake of space
we only discuss the main values of the Table II which are Tα
and SCE.

B. Discussion

Fig. 4 illustrates the mean runtime growth of Combinadic
over n for two different CPUs. The values are taken from
the Table II. The Fig. also contrasts the curves with lines
that represent some meaningful time parameters of the IEEE
802.11 standard [19]. As one might see in the Fig. 4, the
IxS runtime overhead cannot be just assumed as negligible
for the overall system performance. In fact, under the typical
CPU constraints of a legacy OFDM hardware, the resulting
overhead of the O(n2) Combinadic algorithm is as high as
some relevant time parameters of the IEEE 802.11 standard,
also depicted in the figure.

Considering the mandatory timing parameters of Wi-Fi, the
minimum value of n under which the IxS overhead became
meaningful in our testbed was 16. In this setup, OFDM-IM
maps p1 = blog2

(
16
8

)
c = 14 bits in all 16 indexes of the

symbol. The achieved runtime for the 1.8 GHz and 3.5 GHz
CPUs was about 0.92µs and 0.76µs, respectively. In both
cases, this is nearly the mandatory duration of cyclic prefix of
Wi-Fi symbols which is Tcp = 0.8µs and as high as twice the
optional “short” guard interval of Wi-Fi (Tcp = 0.4µs) [19].
With the extra time required by the IxS algorithm, a standard
OFDM Wi-Fi symbol could improve protection against inter-
symbol interference [12] or compensate for the CP overhead,
thus transmitting more useful bits.

In the case study n = 32, the IxS algorithm works to
map p1 = blog2

(
32
16

)
c = 29 bits in 32 subblock indexes.

It took about 4.09µs and 3.16µs on the 1.8 GHz and 3.5
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GHz CPUs, respectively. These resulting overheads are spe-
cially meaningful because they are very close to the duration
of an entire OFDM Wi-Fi symbol with and without cyclic
prefix. These values are 4.0µs and 3.2µs, respectively [19].
Fig. 5 compares OFDM-IM and OFDM in terms of spectro-
computational efficiency (SCE) over increasing n with values
taken from Table II. The Fig. illustrates the inflection point
of the OFDM-IM trade-off. In other words, we are interested
in the largest subblock size under which the IxS computation
overhead pays off for the overall spectral efficiency. Since both
PHY layer designs have the same computational resources
(unless for the IxS task of OFDM-IM), we set the extra
runtime overhead of OFDM with zero (Tα = 0). Therefore
the OFDM’S SCE corresponds to the classical SE formula
(Eq. 2). The IxS runtime overhead (Tα) are on Table II.

From Fig. 5, one can see that an IxS implementation that
fails our Theorem 1 represents a non-negligible overhead for
the overall OFDM-IM’s spectro(-computational) efficiency. In
particular, assuming k = n/2, the Combinadic algorithm
has complexity O(n2) which causes the spectro-computational
efficiency of OFDM-IM to tend to zero over n. As a side
note, this complexity is even higher than the iFFT’s, which is
widely-known to present O(n log2 n) asymptotic cost. Thus,
for sufficiently large n, IxS becomes a bottleneck along the
pipeline process of the OFDM-IM baseband. Also, a hardware
improvement that does not scale on n (from 1.8 GHz to 3.5
GHz in the experiment) has negligible impact to mitigate this
problem.

Fig. 5 also shows that the classic SE formula is not fair
nor accurate. SE predicts that OFDM-IM SE grows arbitrarily
over n because it fails to incorporate the IxS’s runtime
overhead. When this overhead is accounted, the largest n under
which OFDM-IM spectro(-computational) efficiency outper-
forms OFDM is 22. Above this value the smaller runtime
overhead of IxS is about 1.7µs (for n = 24 in Table II), almost
half symbol duration. Thus, the overhead does not payoff for

TABLE II
MEAN RUNTIME Tα OF THE COMBINADIC ALGORITHM [17] AND

CORRESPONDING OFDM-IM SCE ACROSS DIFFERENT SETUPS. FOR Tα , δ
IS THE HALF-WIDTH OF THE CONFIDENCE INTERVAL, x IS THE NUMBER

OF SAMPLES NEEDED TO ACHIEVE A RELATIVE ERROR < 5% AND A
CONFIDENCE INTERVAL OF 95% AND x∗ IS THE NUMBER OF DISCARDED

SAMPLES BEFORE THE SYSTEM GET AT THE STEADY-STATE.

n
CPU

(GHz)
Tα

(µs)
SCE

(b/s/Hz)
±δ

(µs)
x x∗

4 1.8 0.813729 0.78 0.000712715 35748 5958
3.5 0.0814348 0.78 0.0017647 56622 9437

6 1.8 0.148006 0.90 0.00194171 11166 1861
3.5 0.129767 0.90 0.00404575 7200 1200

8 1.8 0.233303 0.94 0.00123101 10536 1756
3.5 0.218394 0.94 0.0108699 711266 1153

10 1.8 0.366022 0.87 0.0130701 11340 945
3.5 0.28045 0.89 0.0117626 4266 711

12 1.8 0.534652 0.88 0.00124155 4824 804
3.5 0.450477 0.89 0.00176413 6666 1111

14 1.8 0.699524 0.87 0.00181733 6804 1134
3.5 0.520196 0.91 0.00495158 6732 1122

16 1.8 0.92518 0.85 0.0022574 3660 610
3.5 0.761947 0.88 0.00389986 4560 760

18 1.8 1.19477 0.82 0.00397684 3420 570
3.5 0.864756 0.87 0.00638502 5046 841

20 1.8 1.49835 0.78 0.0094431 3276 546
3.5 1.20886 0.82 0.00520782 3360 560

22 1.8 1.83004 0.74 0.00795553 3168 528
3.5 1.29598 0.82 0.0123148 3078 513

24 1.8 2.20176 0.70 0.013938 3000 500
3.5 1.73528 0.76 0.0103885 2874 479

26 1.8 2.61688 0.66 0.0134758 2730 455
3.5 1.83402 0.75 0.0134758 3330 555

28 1.8 3.06401 0.63 0.0100115 2454 409
3.5 2.41476 0.69 0.0164394 2634 439

30 1.8 3.56357 0.59 0.0273316 2556 426
3.5 2.48639 0.69 0.0344689 2742 457

32 1.8 4.09465 0.55 0.0226034 2310 385
3.5 3.16605 0.62 0.0159692 2400 400

34 1.8 4.67299 0.52 0.026905 2244 374
3.5 3.2459 0.62 0.0261212 2256 376

36 1.8 5.38654 0.48 0.0324317 2202 367
3.5 3.90204 0.57 0.0384168 3594 599

the transmission of b12 + log2

(
24
12

)
c bits. For our tests, the

best balance between bit gain and computational complexity
was achieved between

(
6
3

)
and

(
14
7

)
. For larger n, the O(n2)

computational complexity of IxS neutralizes the bit gain such
that OFDM-IM’S SCE decays, as one can see in Figure 5.

V. LESSONS, RECOMMENDATIONS AND FUTURE
DIRECTIONS

In this work we presented theoretical and practical studies
about the impact of the index selector task on the OFDM-IM
spectral efficiency. To support our studies, we proposed the
Spectro-Computational Efficiency (SCE) metric. SCE enabled
us to parameterize the extra computational resources consumed
by OFDM-IM with respect to OFDM. For the practical case
study, we considered a classic implementation of IxS called
Combinadic algorithm [17]. Then we parameterized the mean
runtime of Combinadic under typical CPU processing con-



straints of OFDM. For the theoretical study, we characterized
the computational complexity an arbitrary IxS implementation
shall satisfy to ensure its asymptotic runtime overhead does
not neutralize the bit gain of index modulation.

We conclude that the IxS asymptotic complexity cannot
be neglected unless it meets the bounds we reported (or
the hardware processing capabilities scale over n and k). In
particular, we showed that the IxS computational complexity
shall be bounded by O(n) if k = n/2. Otherwise, if the IxS
overhead is ω(n), the OFDM-IM SCE tends to zero over n.
This is the case of the Combinadic algorithm [17] (employed
in [2]–[7], [13], [14]) whose complexity is O(n2) if k = n/2.
We also verify that setting k with lower values (e.g.,

√
n)

require more efficient IxS algorithms to compensate for the
reduction in the bit gain. Hence, in future work we intend to
investigate the design of a linear-time IxS for OFDM-IM with
k = n/2. Beside, we also plan to study the SCE of other
variants of OFDM-IM e.g., MM-OFDM-IM [8], [9].

In our practical case study, we employed SCE to find out
the largest subblock size in which Combinadic leads OFDM-
IM to outperform OFDM on different hardware. We identified
that this happened for n = 22, k = 11 but, because of the
IxS runtime overhead, the best SCE was achieved between(
n
k

)
=
(
6
3

)
and

(
14
22

)
. A future practical comparative case study

consists of figuring out how to speed up the OFDM signal
processing on a hardware with processing capabilities tailored
for OFDM-IM. One can also investigate whether OFDM-IM
SCE improves under sparse FFT (sFFT) algorithms. sFFT is
usually employed to save time in video/image processing,
where some nearly-zero coefficients can be nullified [25].
We note this matches OFDM-IM because n − k coefficients
are always zero. These future works exemplify how our
metric can guide the design and comparative studies of novel
computational-intensive PHY layer proposals.
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