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ABSTRACT This paper makes an information theoretical analysis of the intrinsic secrecy level
of M-QAM and M-PSK modulation schemes considering the use of equal gain transmission and maximum
ratio transmission precoding techniques. In addition to the analysis of the conventional proper M-QAM
and M-PSK constellations, a recently proposed family of improper versions of the M-QAM and M-PSK
modulation schemes is also evaluated. With the exception of proper M-PSK, which verifies always full
secrecy for the considered precoders, the main results show that for low order constellations, the amount
of intrinsic secrecy provided by the combination of the precoder and modulation scheme is significant and,
therefore, can be exploited in the design of a full secrecy solution. The theoretical derivations provided in
this paper can be directly applied to quantify the minimal entropy that a secret key must have to fully secure
the exchange of information for these transmission schemes.

INDEX TERMS Physical layer security, improper constellations, M-PSK, M-QAM, channel coherent

precoding.

I. INTRODUCTION
The emerging concept of the internet of things (IoT) aims
to put billions of regular objects exchanging information
in a ubiquitous way using low power wireless transceivers.
This massive proliferation of wireless terminals increases
the risk of undetectable eavesdropping attacks, bringing new
challenges in terms of information secrecy that must be han-
dled by the current and future wireless standards. Further-
more, the continuous evolution of quantum computing is also
seen as a serious threat to the current asymmetric crypto-
graphic protocols. In asymmetric public key cryptosystems,
the information secrecy is supported by the assumption that
the integer factorization of the product of two large prime
numbers is a very intensive computational task. However,
with the progresses of quantum processing, the factorization
of large prime numbers is expected to become feasible in the
medium term future, making less secure this kind of cryp-
tographic techniques. The technological advances described
above reinforces the need to find new security solutions
that can overcome the vulnerabilities associated with current
cryptographic protocols [1], [2].

One of the solutions that has received significant atten-
tion over the last years is physical layer security, where the
achievement of information secrecy is the result of forcing

some channel advantage for the legitimate user relatively to
the eavesdropper. Therefore, contrarily to what happens with
higher layer cryptographic protocols, physical layer security
does not rely on the assumption that the eavesdropper has
limited computational resources [3]. In wireless communica-
tions the randomness of the channels may be used to get this
advantage, providing therefore a solution to improve security
in these networks.

The fundamentals of information theory to design secure
communication channels were formulated by Claude Shan-
non in 1949. Shannon [4] showed that to reach perfect secrecy
it would be required to establish among the legitimate parties
a secret key with the same size and entropy of the information
source. In his work Shannon did not consider any realistic
channel model, assuming that the secret key was the only
information not shared among the legitimate nodes and the
eavesdropper. A few years later, considering different discrete
memory less channels, Wyner [5] showed that when the
eavesdropper channel is a degraded version of the legitimate
channel, positive secrecy can be reached through coding.
The secrecy capacity of the Gaussian wiretap channel was
formulated by the first time in [6].

The fundamental knowledge established in these early
works paved the way for the development of new and more
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advanced physical layer secrecy schemes. In recent literature
two main lines of research have been followed to advance the
state of physical layer secrecy, which are: the coding domain
and the signal level domain. In the coding domain the target is
design error-correction codes that are also capable to provide
some secrecy to the system [7]-[10]. In the signal domain,
advanced precoding designs, power allocation schemes, and
cooperative jamming based on interference alignment (IA)
[11], [12] and artificial noise injection have been proposed
in the literature [13]-[18].

The works in [19] and [20] demonstrated that positive
secure degrees-of-freedom (DoF) are achieved when several
cooperative nodes are available for jamming. To reach the
secure DoF, Xie and Ulukus [19], [20] proposed as achiev-
ability scheme the use of interference alignment techniques
together with discrete M-PAM constellations. Another rel-
evant research topic focus the use of the reciprocal chan-
nel characteristic, available in time division duplex (TDD)
systems, to establish secure random keys among the legiti-
mate nodes. The potential of received-signal-strength (RSS)
measurements and channel phase estimations for key gen-
eration is analyzed in [21] and [22]. While some works
focus on methods to extract secret keys from the wireless
channel, other schemes use those keys to increase the level
of randomness in the transmitted data symbols [23], [24].
Anjos et al. [23] developed a scheme that maps a secret
key, extracted from the reciprocal channel phase, into a dis-
crete M-QAM jamming signal. An alternative solution to the
use of jamming signals was suggested in [24] considering
the combination of a MRT precoder with a scheme that
uses the secret key to apply continuous random phase rota-
tions in the transmitted M-PSK information symbols. As in
the pioneering work of Shannon [4], Anjos et al. [23] and
Chen et al. [24] considered secret keys with the same entropy
of the information source, not taking advantage or analyzing
the intrinsic secrecy already provided by the combination of
the channel coherent precoder and the modulation scheme.

Considering precoding, there has been in recent year’s
significant research on improper Gaussian signaling to effi-
ciently handle interference in complex multiuser scenar-
ios [25]-[27]. The lack of practical application of continuous
Gaussian signals led Santamaria et al. [28] to develop a
family of improper discrete constellations that can be used
to approximate the improper Gaussian capacity of a complex
AWGN channel. The theoretical analysis done in [28] con-
sidered only the legitimate channel capacity for the specific
case of improper M-QAM constellations, making the secrecy
evaluation of this kind of signals an open issue.

This paper makes an information theoretical analysis
of the intrinsic secrecy level of M-QAM and M-PSK
modulation schemes considering the use of equal gain
transmission (EGT) and maximum ratio transmission (MRT)
precoding techniques. Additionally to the analysis of the
conventional proper M-QAM and M-PSK constellations,
a recently proposed family of improper versions of the
M-QAM and M-PSK modulation schemes is also evaluated.
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With exception of proper M-PSK, which verifies always
full secrecy for the considered precoders, the main results
show that for low order constellations the amount of intrin-
sic secrecy provided by the combination of the precoder
and modulation scheme is significant, and therefore can be
exploited in the design of a full secrecy solution.

The secrecy analysis presented in this work assumes spe-
cial relevance in TDD systems for scenarios where full blind-
ness regarding the eavesdropper conditions (e.g. channel)
is verified. Under such circumstances, most of the works
found in the literature consider a two-step encryption process
to achieve perfect secrecy. In a first phase, the legitimate
terminals extract from the reciprocal channel (TDD) a com-
mon secret key with the same entropy of the information
source. In a second phase, the channel is secured combining
the secret key with the information signal at the legitimate
transmitter. However, in future wireless networks, channel
coherent precoding will be applied at the physical layer
of wireless terminals. As it is demonstrated in the present
work, an implicit channel secrecy is naturally obtained when
the coherent precoding technique is combined with different
modulation schemes (QAM, PSK). Therefore, the analysis
of this implicit secrecy is a fundamental work, important
not only to quantify how much the entropy requirements of
a secret key can be relaxed, but also to understand quali-
tatively how the signal structure associated to the different
modulation schemes impacts the channel secrecy when the
considered precoders are applied. To the best of our knowl-
edge, the analysis of the implicit secrecy performed in this
manuscript has not been treated in the literature.

Notations: Boldface capital letters denote matrices and
boldface lowercase letters denote column vectors. The norm
of vector x is given by |x]||, being the vector of absolute
values of the individual elements of x defined as x;;. The
absolute value of the scalar x is defined as x)| or |x|, while the
vector of individual phases of the elements of x is defined as
X4. The complex conjugate of x is represented by x*, while
N {x} and J {x} are the real and imaginary parts of x. The

transpose of vector X is defined as x” .

Il. SYSTEM MODEL AND EVALUATION METRIC

This section presents the system model as well as the evalu-
ation metrics used to assess the performance of the analyzed
constellations.

ey : Y
----- > A ?» B
d
. , Y Y. Y
-» E

FIGURE 1. General system model.
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A. SYSTEM MODEL
The system model considered for the secrecy analysis per-
formed in this work is depicted in Fig. 1. The following
nodes compose the system: ‘A’ is the legitimate transmitter
(Alice); ‘B’ is the legitimate receiver (Bob); and ‘E’ is the
eavesdropper (Eve). We assume that ‘B’ is a single antenna
terminal, being ‘E’ and ‘A’ multiple antenna nodes with Ng
and N4 elements respectively. In Fig. 1, signal d defines
information data that ‘A’ pretends to exchange with terminal
‘B’, the complex vector h = [/ hy ... hy, ] represents the
channel between ‘A’ and ‘B’, while G = [g1 g2 ... gn, ] is
an Ng x N4 matrix that defines the channel response between
node ‘A’ and ‘E’, with Ng > N4. The elements of h and G are
independent complex Gaussian random variables with zero
mean and unitary variance. Finally np and ng represents zero
mean complex Gaussian noise with variance equal to 01% and
covariance matrix defined by Ug.

Defining p as the channel coherent data precoder, the signal
transmitted at node ‘A’ is represented as

X =pd, ey

being the signals received at nodes ‘B’ and ‘E’ formulated as
z=hx+np, 2

y=Gx+ng 3)

respectively. We assume that ‘E’ is a passive terminal and has
no access to the legitimate channel h, i.e. only G is known at
the eavesdropper. The assumption of a passive eavesdropper
means that this node listens the communication and does
not cause any intentional interference in the communication
channel, making G unknown to node ‘A’. Furthermore, per-
fect channel estimation of h is verified at node ‘A’, being the
transmitted power at this node constrained to E [||x||2] < 1.
Ideal RF up- and down-conversion is also considered, with all
the baseband processing applied to an independent flat fading
channel realization.

B. EVALUATION METRIC

As mentioned before, the target of this work is to make
an analysis of the intrinsic secrecy of M-PSK and square
M-QAM modulations when they are combined with MRT
and EGT precoders. In order to quantify the amount of infor-
mation regarding d that is leaked to node ‘E’, the mutual
information /(d; y) is used as a metric. In the secrecy analysis
carried in this manuscript we will use the polar decomposition
of d and y to define I(d; y), which is formulated as,

I(d;y) =1(dy; y)) +1(d<; y<ld))
+Id); y<ly)) +1d< y)ld), y<), 4)

where d)| and y)| represent the magnitudes of d and y, while
d and y are the respective phases. The mutual information
in (4) can be also defined as

I(d;y) = h(d) — h(dly) &)

where h(d) is the entropy of the data source and h(d|y) is the
equivocation at the eavesdropper.
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IIl. IMPROPER DISCRETE CONSTELLATION DEFINITION
Contrarily to what happens with proper signals, in improper
signal structures the original signal is correlated with
the respective complex conjugate. As mentioned before,
additionally to the secrecy analysis of the conventional
M-PSK and M-QAM constellations, which in this work
define the proper constellations, the respective improper ver-
sions defined in [28] will be also considered.

The design of the improper discrete family proposed in [28]
is done by making a linear transformation of the proper
constellation. Considering d as a point in the proper constel-
lation, the corresponding point in the improper constellation
is defined in [28] as

d; = wid + wod*, (6)

being the coefficients wi, wy given by

1
wi =,/§(1+a), @)

Wy = %(1 —a)e®. 8)

The phase ¢ € [0; 7 /2] in (8) is a free parameter, while o

is computed as
a=+(1-k? )

for k € [0;1]. The parameter k measures the degree of
impropriety, and is defined as

2

O ju*

- @ (10)
%a

being ajd* the covariance between d and d*, while aj is

the variance of d. Two examples of improper constellations

generated by the linear transformation defined in (6) are

presented in Fig. 2 and Fig. 3 for 256-QAM and 64-PSK.

051

05+

-1 -0.5 0 0.5 1

FIGURE 2. Improper 256-QAM constellation for k = 0.7 and ¢ = = /4.

IV. SECRECY ANALYSIS

This section presents a detailed evaluation of the intrin-
sic security of proper and improper M-PSK and M-QAM
modulations considering that these signals are precoded by
coherent techniques such as EGT and MRT. Regarding the
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FIGURE 3. Improper 64-PSK constellation for k = 0.9 and ¢ = /3.

M-QAM modulation, our analysis is restricted to the cases
where M = 4™, with m a positive integer. The analysis
of the secrecy already provided by coherent transmission
techniques is a relevant issue since it allow us to quantify the
amount of entropy that a shared secret key must have to fully
protect information from a malicious eavesdropper.

A. INTRINSIC SECRECY OF COHERENT PRECODING

The intrinsic secrecy of coherent precoding results from the
fact that the eavesdropper has no knowledge of the legitimate
channel h that is used in the precoding operation. The secrecy
capacity depends on the precoding technique and the specific
modulation scheme used to transmit d. In this sub-section
we demonstrate how to quantify the leakage of information
I(d;y) at node ‘E’ when both EGT and MRT precoding
schemes are applied.

In order to quantify the secrecy obtained only by the
combination of the precoder with the modulation scheme,
the noiseless regime is considered at node ‘E’, since this
represents a worst case scenario for Bob. In the following,
without loss of generality we assume that G is equalized at
the eavesdropper, and therefore

y=pd Y

is the signal observed at terminal ‘E’, which is used by the
eavesdropper to acquire information about the source d in a
single realization of the channel.

1) SECRECY ANALYSIS OF EGT PRECODER
In the EGT precoding only the phases of the legitimate
channel h are used in the design of p. Considering the polar

representation h; = |h|e®,i = 1,2,..., Ny, the EGT
precoder is defined as
1 . ‘ . T
p= e eIt e, (12)
VNa | ]
being
1 . .
Y = ——|d|e/% e 13
Vi ml | (13)
the signals estimated at the eavesdropper with d = |d| e/,
the polar representation of d fori = 1,2, ..., N4. Since the
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channel coefficients in h follow a complex Gaussian distri-
bution, the phases 6;,i = 1,2,..., N4 are uniformly dis-
tributed, which ensures that the information carried in 6, is
protected. Therefore, the amount of information obtained by
the eavesdropper when § is observed can be derived from (4)
and (5) as,

I(d;y) = Id); ¥))
= h(d)) — h(d)||§))
= h(d)) (14)

Due to the fact that 6; is uniform and h is independent
of d, the only term in (4) that is different of zero is I(d)|; ¥))).
Therefore, as shown in (14), the amount of information that is
leaked to the eavesdropper when EGT is applied is quantified
by the entropy of the magnitude of the information source d.

2) SECRECY ANALYSIS OF MRT PRECODER

For the case of MRT precoding, the phases and the magni-
tudes of the legitimate channel h are used to generate vector p.
Considering again the polar definition of h, the precoder is
formulated as

p= gy LImle ™ liaje e ]
15)
being
1 . .
$i = wldl bl e (16)
[l
the signals acquired at the eavesdropper fori = 1,2, ..., Na.

Applying the same arguments used for the EGT case, and
considering that the magnitudes h;| of the legitimate channel
are known at ‘E’, an upper bound for the amount of informa-
tion obtained by the eavesdropper when § is observed can be
formulated as,

1d;y) = Idy; 3))

< I(dy; ¥ hy)
= h(d))) — h(d)| |y, hy))
= h(d)). a7

The result in (17) shows that when MRT precoding is
applied, the entropy of the magnitude of d can also be used
to quantify the leakage of information at ‘E’, however, in this
case h(d)|) defines an upper bound for I(d; §).

B. MAGNITUDE ENTROPY OF PROPER CONSTELLATIONS
As demonstrated in Section IV.A, for EGT and MRT precod-
ing the intrinsic secrecy level of the transmission scheme is
quantified by the entropy of d||, which in turn depends on
the structure of the signal constellation applied in the modu-
lation process of d. This sub-section presents a theoretical
analysis of h(d)) for the conventional M-PSK and square
M-QAM modulations. In the following derivations we con-
sider a uniform distribution over the constellation points.

1) M-PSK
In proper M-PSK modulation it’s easy to see that all the
information is coded in the phase of d, therefore h(d)|) = 0.
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Taking into account (14) and (17),
Id;y)=0 (18)

for both EGT and MRT precoding, i.e. the coherent trans-
mission scheme provides all the secrecy needed to protect
information from the eavesdropper, which means that no
additional security schemes are required.

2) M-QAM

In square M-QAM constellations, because part of the infor-
mation is coded in the magnitude of the d, h(d)|) # 0 and
some leakage of information is verified at ‘E’. In order to
quantify the secrecy level of square M-QAM signals, a closed
formulation for an upper bound of A(d))) is derived as

h(d))) = u(M)

2
— log, (M) + %M _3. (19)

The proof regarding the derivation above can be consulted
in section A of the Appendix. The resultin (19) shows that the
amount of information that is protected from the eavesdrop-
per is greater or equal than log, (M )—u(M ). Additionally, note
that u(M) can be used to quantify the minimum entropy that
a secret key must have to secure an EGT/MRT transmission
scheme when square M-QAM signals are used to modulate d.

The normalized asymptotic analysis of (19) when M — oo
can be done calculating the following limit,

o uM) 2VM 3
lim

Mooolog,M | Mlog, M) log, (M)
—1 (20)

The result in (20) shows that when the order M of the
square QAM signal grows to infinity, u(M) tends to log, M.
As the numerical results will also confirm, for M — oo the
normalized magnitude entropy approaches to one, however,
in absolute terms at least three bits are always secured. The
analysis presented above shows that there are always some
intrinsic secrecy that can be exploited when the considered
precoders are applied to proper QAM signals.

C. MAGNITUDE ENTROPY OF IMPROPER
CONSTELLATIONS

The entropy of the magnitude component of the improper
constellations family described in section III is analyzed in
this sub-section. Accordingly to (6), to construct the improper
constellation, d;, the conventional M-PSK and M-QAM con-
stellations are considered for the proper signal d. The first
step in this secrecy analysis is to define the general formu-
lation for the magnitude entropy of the improper signal dj,
which is given by

Wy = h <\/ S+ i)

= h (S {d)? + 91 ?)
=h(0). (21

VOLUME 6, 2018

The value of Q is derived in section B of Appendix using
the complex form of d; (see section III). The final formulation
of Q is defined in equations (22), (23).

0 = R{d} + 3 {d}?
+2b [cos @) (m dy =3 {d}z)
+2sin (@) N {d} I {d}] (22)

b=\/i(1—a)(l+a) (23)

In the next two points we will analyze how the entropy of Q is
affected when proper M-PSK and M-QAM signals are used
ford.

1) IMPROPER M-PSK

Considering d as a proper M-PSK signal, the instanta-
neous power of d is constant and therefore the value of
N {d}? + 3 {d}? does not change. Hence, because

JdP +0{d)? =K, (24)
the value of expression (22) can be simplified to,
0 = K +2bX (¢) (25)
with
X (@) =cos (¢) (W1a)? - 3 (aP?)
1 2sin (@) R {d) I {d}. (26)

Note that X (¢) is the only random variable in (25), there-
fore (21) simplifies to

h(dy) = h[X (9)], 27

being h(dj) independent of the impropriety parameter k
defined in (10). For an M-PSK constellation, the correspond-
ing real and imaginary parts may be parameterized as follows

N{d} = cos (6,), (28)
3 {d} = sin (67). (29)

Therefore, equation (27) can be re-formulated as
h(dy,) = h[cos (¢ — 204)] (30)

by replacing (28) and (29) into (26) (see section C.1 of
Appendix). Because the angular period of cos (¢ — 26;)
over 6 is m, if we consider that M is even and the symbols
are uniformly spaced across the phase range, the following
bounds

log, (M) —2 < h[cos (¢ —204)] <logy, (M) —1 (31)

can be computed for any value of the parameter ¢
(see section C.2 of Appendix). Note that the result in (31)
shows that in the worst case the coherent precoding scheme
secures at least one bit of d;, while in the best case at least
two bits are secured.
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2) IMPROPER M-QAM

In this case, a proper M-QAM signal is used for d in order
to generate the improper version d; formulated in (6) for
O<op<m / 2and 0 < k < 1. To simplify the explanation of
the analysis used for the calculation of the magnitude entropy
of dj, let’s begin by consider the equalities in (32)-(34).

C = N{d)?+3{d)? (32)

D = cos (¢) (m dyP -3 {d}2> + 2sin ($) N {d) S {d)
(33)

Q= C+2bD (34)

To compute £ (Q) we start by focusing our attention in D.
Since we are considering M-QAM symbols for d, the value
of D does not vary among symmetrical symbols, i.e. symbols
with the same magnitude and a phase shift of 7. There-
fore, it is possible to see that considering only the term D,
M /2 groups of two symmetrical symbols are generated, being
the magnitude among the two symbols within each group the
same. Depending on the value of ¢, it can happen that all the
groups of two symmetrical symbols generate different values
of D among them, which means that & (Q) is fully generated
by & (D) and the magnitude entropy is defined as

2
h(Q) = —log, (A_/I) 35)

For the values of ¢ where exist different groups of symmet-
rical symbols that generate the same value of D, the value
of h (D) is lower, however the groups in which the same value
of D is verified have always different magnitudes among
them, therefore, when C is added to 2bD the value of & (Q)
continues to be defined by (35).

20 T T -
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—-—-log,(M) - ¥
16 [ - e
— e /*
% 14+ 5 > 1
= -
> L P - x 4
8. 12 Py -
= - %
< e -
w 10 - o ]
[} - *
° 7 ~
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s° -7 7
R 2
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,//
R
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2 4 6 8 10 12 14 16 18 20
log,, (M)

FIGURE 4. Magnitude entropy proper square M-QAM.

V. RESULTS

The theoretical and numerical results for the magnitude
entropy of the proper and improper signal constellations
analyzed in IV are presented and compared in this section.
The magnitude entropy curves in Fig. 4 — Fig. 7 quantify the
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amount of information in bits per channel use (Bpcu) that is
leaked to the eavesdropper when the EGT and MRT channel
coherent precoders are used for transmission. As mentioned
before, these results can be interpreted as the amount of
entropy that a shared secret key must have to force the eaves-
dropper channel capacity to zero. Therefore, in the following
analysis we use as reference the log, (M) upper bound, which
was defined in [4] as the minimal entropy that must be added
to the signal to fully secure a communication channel where
the eavesdropper have access to the same signals observed by
the legitimate receiver. The difference between the log, (M)
reference and the obtained results allow us evaluate the
amount of secrecy provided by the transmission scheme,
i.e. how much the entropy requirements of a secret key can
be relaxed (in relation to [4]) when the considered precoders
and modulations schemes are applied.

A. PROPER CONSTELLATIONS

In this sub-section only the results regarding proper square
M-QAM constellations are discussed, since in proper M-PSK
signals the magnitude entropy is always zero.

0.9 T T T T T T T T
Numerical Simulation % *
0.8 - |—%— Theoretical Upper Bound % *
0 %
Lo7r P ¥ 1
2 *
[
£ 0.6 =
w
) /*{
Gosr , .
2 y
S04} ,
204
=
B o3r j
N
©
Eo2r _
o
p=4
0.1 q
0 | . . . . | . .
2 4 6 8 10 12 14 16 18 20

log, (M)

FIGURE 5. Normalized magnitude entropy proper square M-QAM.

The non-normalized magnitude entropy for square
M-QAM signals is presented in Fig. 4, while the respective
normalized version is depicted in Fig. 5. The first observation
is related to the fact that when the constellation order M
increases, the percentage of information acquired by the
eavesdropper also increases, therefore, as derived in (20) and
confirmed by the normalized numerical results in Fig. 5,
when M — oo the normalized intrinsic secrecy of the
transmission scheme tends to zero. However, for low order
constellations the amount of information that is secured by
the transmission system is large and therefore can be used to
significantly reduce the entropy requirements of a secret key
shared between Alice and Bob. Intuitively, these results can
be explained by the fact that by increasing the constellation
order of a square QAM signal, the cardinality of the set
defined by the magnitudes of the constellation increases and
therefore more information is leaked for the eavesdropper.
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In relation to the theoretical upper bound derived in (19),
the results in Fig. 4 and Fig. 5 reveal a good approximation
to the value computed numerically.

8 T T T
Improper 256-PSK
X

7 i |

Improper 64-PSK

ARRRRARAREREANY

Improper 16-PSK

[¢] ()]

Magnitude Entropy (bits)
EN

w
_
—_
_

phi (rad)

FIGURE 6. Magnitude entropy improper M-PSK.

B. IMPROPER CONSTELLATIONS

The entropy results for improper M-PSK signals are pre-
sented in Fig. 6. As demonstrated in (24)-(27), the magnitude
entropy of improper M-PSK does not depends on the impro-
priety parameter k, therefore, in this case the analysis was
done considering just the variation of the parameter ¢. As the
results in Fig. 6 confirm, depending on the value of ¢ the
amount of secured information varies between one and two
bits, which agree with the derivation in (31). The maximum
entropy values observed in the curves presented in Fig. 6 are
a consequence of the fact that for the considered values
of ¢, there are always M /2 different magnitudes generated
by M /2 groups of two constellation points. The minimum
values occur when some of the magnitudes generated by
these groups coincide, which happen for a finite set of values
of ¢. For some values of this set (e.g. 7/4) we achieve the
minimum of equation (31).

In the case of improper square M-QAM, in order to con-
firm numerically the derivation in (35), we did a sweep in
the input parameters ¢ and k considering the ranges 0 <
¢ < m / 2and 0 < k < 1, respectively. The numerical
evaluation showed that the magnitude entropy of improper
square M-QAM only changes with the constellation order M
for the considered ranges of ¢ and k, therefore the results
in Fig. 7 were presented just as a function of M. As derived
in (35), the magnitude entropy results in Fig. 7 allow
to conclude that at least one bit is secured for improper
M-QAM constellations. As argued before and similarly to the
explanation given in the case of improper PSK, these results
are due to the fact that for the considered ranges of ¢ and k,
there are always M / 2 different magnitude values generated
by M / 2 groups of two constellation points. Similarly to the
proper square M-QAM signal, when the constellation order
increases, the normalized intrinsic secrecy of the transmission
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FIGURE 7. Magnitude entropy improper square M-QAM.

scheme reduces with the increase of M . Finally, as it is evident
from the results above, the improper versions of the M-PSK
and M-QAM modulation schemes have always worst secrecy
performance in comparison to the proper case.

VI. CONCLUSION

In this work we showed that the proper and improper versions
of M-QAM and M-PSK constellations have always associ-
ated some intrinsic secrecy when channel coherent precoders
like EGT and MRT are applied to these modulation schemes.
With exception to proper M-PSK, which verifies always
full secrecy, the numerical and theoretical results allowed
to conclude that although for large order constellations the
normalized secrecy level reduces when M — oo, for lower
values of M the percentage of information secured by the
transmission scheme is large and therefore can be exploited
to significantly reduce the entropy of a secret key used to
protect the information. Furthermore, a secrecy comparison
between the proper and improper constellations showed that
the improper case is less secure.

APPENDIX

A. MAGNITUDE ENTROPY OF SQUARE M-QAM

The symmetry observed in a square M-QAM constellation
allows to quantify the entropy of the respective magnitude
analyzing just the structure of one of the quadrants, more
specifically the region 0 < 6 < m/4. In the upper bound
formulated in (19), it was assumed that each symbol of the
constellation within the region 0 < 6 < 7 /4 generates a dif-
ferent magnitude. Furthermore, the constellation symmetry
makes that each magnitude referent to the symbols aligned in
6 = /4 is generated with probability

4
M b
while each of the remaining points in 0 < 6 < m/4 is

responsible by generate a magnitude with probability,

8

Poxj4 =75 37

Prja = (36)
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Since the number of symbols aligned in & = 7 /4 and within
the region 0 < 0 < m /4 is defined as

M
Krya = £ (33)

Ko, z/4 = (39

respectively, an upper bound for the magnitude entropy can
be computed as

h(dy) = =Y _ p(d) logy(d)
]
< —Kn/apn/a10g; (prya)
— Ko,7/4P0,7 /4108, (P0,7/4)

VM 4 (4)
=——X — xlogy, | —
2 "M M
(VM -2)vM| g
s XM“"&(M)
_ M, (4
T M OgZ(H)
. 2JM1 8
S\ M 0g2<1l_/1>
= log, (M) + % - 3. (40)

In reality, when M is large there are points in the region
0 < 6 < m/4 that generate the same magnitude of a symbol
aligned in 8 = m /4, however, the number of magnitudes in
which that overlap is verified is very reduced, making the
upper bound derived in (19) a good approximation to the real
entropy.

B. MAGNITUDE DERIVATION OF

IMPROPER CONSTELLATION

Considering the complex representation of expressions
(6)—(8), the improper constellation can be formulated as,

dp =N {d} +j3{d;}. 41

with,
N{d;} = [B+Acos (p)|N{d} + Asin(¢p) I{d}, (42)
3I{d;} = Asin(p) R {d}+[B—Acos(P)]13{d}, (43)

1
A=\50-a. (44)

B= ,/%<1+a), (45)

Replacing (42) and (43) in (41), the value of Q is defined
as,

Q = J{d) + 9t {dy)’
= 3 {d)* + 0 {d)?
+2ABcos (¢) (% [dpP—3 {d}2>
+4ABsin (¢) R {d} 3 {d} (46)
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Finally, since b = AB, the formulation in (46) is identical
to expression (22).

C. MAGNITUDE ENTROPY OF

IMPROPER M-PSK

Some intermediate derivations developed to reach the formu-
lations defined in equations (30) and (31) are presented in the
following two points.

1) DERIVATION OF cos (¢> — ZF)d)
Replacing (28) and (29) in (26), X (¢) can be formulated as

X (@) = cos (9) [cos (6,)* — sin (6,)*]
+ 2sin (¢) cos (B7) sin (6g). (47)

Then, applying the following trigonometric identities

cos? (87) — sin® (6z) = cos (267) , (48)
. sin (26,)
cos (Bg) sin (By) = — (49)

expression (47) is defined as
X (¢p) = cos (¢) cos (20;) + sin (¢) sin (26;) . (50)
cos (¢p) cos (264) + sin (¢) sin (26,) = cos (¢ — 26,)
(51
Replacing (51) in (50), the value of X (¢) is given by
X (¢) =cos (¢ —26q) . (52)

2) BOUNDS ON THE ENTROPY OF cos (¢ — 264)

Let’s start by consider the exponential form of cos (¢ — 26,),
as follows

1 . 1 .
cos (¢ — 2604) = Ee'(“’*”d) + Ee*f“f’*zed). (53)

Considering that Z is a random variable that is generated
by the sum of two random variables X and Y, the entropy of

Z=X+Y 54)
can be formulated as
hZ)=hX)+ WY|X) — hX|Z). (55)

Applying (55) to (53), the entropy of cos (¢ — 264) can be
written as,

h[cos (¢ —264)]
_nl Lao200] L[ Loio—200
2 2

L w200
2

—h I:%ej(¢_29d) cos (¢ — 290,)}

= h(6a) + h(64|6a) — h[04] cos (¢ —204)]
= h(0a) — h[0a]cos (¢ —204)]
= logy (M) — h[64]cos (¢ — 264)] (56)

Because the angular period of cos (¢ — 26;) over 8, is 7,
if we consider that M is even and the symbols are uniformly
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spaced across the phase range, at least there are always
groups of two values of 6, that repeat the same value of
cos (¢ — 20,). Therefore the following result

h[64|cos (¢ —204)] = log; (2), (57)

defines a lower bound on 4 [6,]cos (¢ — 264)] that occurs
when we have M /2 groups of two M-PSK symbols gen-
erating M /2 different values of cos (¢ — 264). Since the
maximum number of times that the value of cos (¢ — 26,)
can be repeated across 6 is four, an upper bound on
h[64] cos (¢ — 26,)] is formulated as

h{04|cos (¢ —204)] < log, (4). (58)

The upper bound in (58) occurs when we have M /4 groups
of four M-PSK symbols generating M /4 different values of
cos (¢ — 204). Applying (57) and (58) to expression (56), the
following bounds are obtained

logy (M) — 2 < h[cos (¢ — 204)] < logy (M) — 1. (59)
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