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Abstract— We present a new method for the discrimination 
of explosive cough events based on a combination of spectral and 
pitch-related features. The method was tested on 16 distinct 
partitions of a database with 9 patients. After a pre-processing 
stage where non-relevant segments were discarded, we have 
extracted eight features from each of the other segments and 
have fed them to the classifiers. Four types of algorithms were 
implemented to classify the events, with Bayesian classifiers 
achieving the best performance. Preliminary results showed 
that performance increased when the analysis was performed on 
individual subjects  and when specific sensor locations were 
chosen. These results demonstrate that personalizing the 
analysis is a promising approach and shed some light on where 
to put sensors when automatic analysis is performed in the 
future. 
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I. INTRODUCTION

Cough is the most common symptom for which patients 
seek medical advice [1]. It occurs naturally as a defense 
mechanism to protect the respiratory tract and it is one of the 
most common symptoms of pulmonary disease [2]. It can be 
characterized by an initial contraction of the expiratory 
muscles against a closed glottis, followed by a violent 
expiration as the glottis opens suddenly [3]. The cough sound 
can be split in three phases: an explosive phase, an 
intermediate period, and a voiced phase. Technological 
advances have enabled the development of automated and 
ambulatory cough monitors, but there are currently neither 
standardized methods for recording cough nor adequately 
validated, commercially available, and clinically acceptable 
cough monitors [4-5]. 

The main goal of this work was to design a method for the 
automatic recognition and counting of coughs solely from 
sound recordings, ideally removing the need for trained 
listeners. The secondary goal was to find whether subjects' 
individual characteristics and specific sensor locations 
influence the performance of the algorithms. 

II. MATERIAL AND METHODS

A. Data Collection
Pulmonary signals were recorded at the General Hospital 

of Imathia - Health Unit of Naousa, Greece, which provided 
ethics permission to conduct the study. All participants were 
diagnosed with chronic obstructive pulmonary disease. 
Auscultation data were acquired with a 3M Littmann 3200 
stethoscope sequentially in six different positions: four in the 
back and two in the front of the chest with each participant in 
a sitting position. Fig. 1 shows the locations on the chest wall 
that were used for the recordings. During the acquisition, the 

volunteers were asked to simulate cough and then to count 
from one to ten. The dataset is comprised of 54 mono 16-bit 
recordings (6 per subject) with a sample rate of 4000 Hz and 
mean duration of approximately 19 s. A detailed description 
of the dataset can be found in Table I. The physicians who 
supervised the data acquisition annotated the different events 
in the timeline and we assigned them to four classes: (1) 
explosive cough, (2) voiced cough, (3) speech, and (4) other, 
a class composed of background noises, body rubs, wheezes, 
crackles, laughter, throat clears, and other artifacts. Segments 
of cough and speech were the predominant events in this 
database. 

TABLE I. DESCRIPTION OF DATABASE 

Population/City Naousa 
Sampling Rate (Hz) 4000 

Stethoscope 3M Littmann 3200 
Number of Patients 9 

Average Signal Duration (s) 19 

B. Pre-processing
In the pre-processing stage, the audio signal was filtered

using an 8th-order infinite impulse response (IIR) high-pass 
filter with 80 Hz (below the lower bound of the typical adult 
human voice [6]) as the half-power frequency, followed by 
normalization. Then, near-silent segments were discarded 
using the following process: given a threshold for length (40 
ms) and another for amplitude (5%), segments whose length 
and amplitude were both below their respective thresholds 
were classified as near-silent and discarded, i.e., a segment 
was considered near-silent if its number of consecutive 
samples with absolute amplitude below 5% added up to less 
than 40 ms. These parameter settings were chosen because, 
following the approach of Drugman et al. [7], we have 
focussed on the detection of the explosive phase of cough. 
This phase is characteristic of the beginning of any cough 
event, while the intermediate phase is very similar to a forced 
expiration and the voiced phase is not present in all cough 
events. Fig. 2 shows the audio signal before and after pre-
processing. 

Fig. 1. Chest wall locations for the recording of respiratory sounds 
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C. Feature Extraction 
Two types of features were extracted in this stage: global 

features (computed for each frame of the signal) and local 
features (computed for each relevant segment). 

First, the magnitude spectrum was computed using the 
short time Fourier Transform (STFT) in frames of 50 ms with 
an overlap of 80%. An example of the magnitude spectrum of 
some events is shown in Fig. 3. Three global features were 
extracted from this magnitude spectrum: the spectral flux, 
calculated as the Euclidian distance between the magnitude 
spectrum of each successive frame; the first Mel-frequency 
cepstral coefficient (MFCC), which is a measure of the 
spectral shape of the sound; and the pitch inharmonicity, 
which estimates the number of partials that were not multiple 
of the fundamental frequency [8]. Then, for each non-silent 
segment, the peaks of the waveform envelope were computed 
and new segments with a duration of 100 ms were defined 
around the peaks. The MIR Toolbox [8] was used to perform 
these operations. Five local features were extracted at this 
stage: Mean and Maximum Spectral Flux, Mean and 
Maximum MFCC, and Mean Pitch Inharmonicity. 

The computation of the other pitch features involved some 
additional steps. First, an 8th-order IIR low-pass filter with 
half-power frequency of 300 Hz was applied (the typical adult 
human voice fundamental frequency range, considering both 
sexes, is between 85 Hz and 255 Hz [6]). The magnitude 
spectrum of the low-pass filtered signal was then computed 
using the STFT and the peaks corresponding to the 
fundamental frequency at each frame were estimated. Finally, 
three local features were extracted: Pitch Coverage, the ratio 
of the number of frames where a fundamental frequency is 
detected to the total number of frames of each segment; Pitch 
Mean and Standard Deviation, the average and standard 
deviation of the estimated fundamental frequencies of each 
segment. 

D. Classification 
To classify the audio signals we compared several 

classification algorithms from the WEKA data mining 
software [9]. Four types of classifiers were used in this work: 
Bayesian, Support Vector Machines (SVM), Propositional 
Rule Learner, and Bootstrap Aggregation. 10-fold cross 
validation was performed for each classification algorithm, 
and the experiment was repeated 10 times, with the average 
being reported. 

1) Bayesian classifier: Naïve Bayes 
This classifier is a kind of Bayesian network that is termed 

naive because it relies on two simplifying assumptions: 
predictive attributes are conditionally independent given the 
class; no hidden or latent attributes influence the prediction 
process [10]. Two implementations of this classifier were 
tested, which only differ in the method used for density 
estimation of continuous attributes: one uses a single Gaussian 
to estimate the density of each variable while the other uses a 
kernel method. 

2) SVM: Sequential Minimal Optimization 
Sequential Minimal Optimization (SMO) is an algorithm 

for training SVM that quickly solves the SVM Quadratic 
Programming (QP) problem by decomposing it into QP sub-
problems [11]. Two kernel functions were used in this project: 
linear and radial basis function. For each kernel, the 
complexity parameter C assumes the values of 0.1, 1, and 10. 
This parameter allows one to trade off training error vs. model 
complexity. The higher the value for C is, the smaller the 
number of training errors become, leading to a behavior 
approaching that of a hard-margin SVM [12]. Data were 
standardized before all computations. 

3) Propositional Rule Learner: RIPPER 
Repeated Incremental Pruning to Produce Error Reduction 

(RIPPER) [13] is an optimization of the Incremental Reduced 
Error Pruning (IREP) rule-learning algorithm [14]. IREP 
integrates reduced error pruning with a separate-and-conquer 
algorithm. For each class, RIPPER grows rules in a greedy 
fashion and selects the conditions with highest information 
gain. Each rule is then pruned by deleting the conditions that 
maximize the function  

(1) 

where P (respectively N) is the total number of examples in 
PrunePos (PruneNeg) and p (n) is the number of examples in 

 
Fig. 2. Audio signal (a) before and (b) after pre-processing 

 
Fig. 3. Magnitude spectrum of eight segments of the following classes: 

explosive cough (red), voiced cough (yellow), artifact (green), and 
speech (pink) 
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PrunePos (PruneNeg) covered by Rule. This process is 
repeated until no deletion improves the value of v. After 
generating the initial rule set, the rules are revised and 
optimized using a Maximum Description Length heuristic. 
Three versions of this classifier were tested, with the 
following number of optimization runs: 2, 5, and 10. 

4) Bootstrap Aggregation: Bagging 
Bagging predictors is a method for generating multiple 

versions of a predictor and using these to get an aggregated 
predictor [15]. This method is used to reduce the classifier 
variance. Bootstrapping the training set forms the multiple 
versions and the replicates are used as new learning sets. 
Bagging uses ten replicates of three base classifiers in this 
project: OneR [16], which uses the minimum-error attribute 
for prediction, discretizing numeric attributes, Naive Bayes 
with Gaussian fitting [10], and J48, an implementation of the 
C4.5 decision tree [17]. 

III. EVALUATION 

A. Datasets 
The original database gave origin to 16 datasets: one for 

each sensor position (P1, P2, ... P6), one for each subject (S1, 
S2, ... S9), and one containing all recordings (SP). The number 
of events per class in each dataset is presented in Table II. 

B. Evaluation metrics 
Classification accuracy was not a good metric to use in this 

project as the datasets were not balanced. Additionally, there 
was only one relevant class; therefore, metrics that are useful 
in binary decision problems are presented for the positive 
class: the area under the Receiver Operator Characteristic 
(ROC) curve and the area under the Precision-Recall Curve 
(PRC). The relationship between these two curves is discussed 
thoroughly elsewhere [18]. 

C. Results 
The results for the SP data set are shown in Table III.  

Considering Naive Bayes with Gaussian fitting (NB 
Gaussian) as the baseline (it is the fastest algorithm of this 
group and its interpretability is high), only two other 
classifiers perform significantly better on this data set: NB 
with Kernel fitting (NB Kernel) and Bagging with J48 trees 
(Bagging J48). 

TABLE II.  NUMBER OF EVENTS PER CLASS IN EACH DATASET 

Datasets Cough Voiced Speech Artifact 
All 470 333 479 113 
P1 75 59 68 11 
P2 66 49 100 20 
P3 94 71 86 11 
P4 75 62 76 14 
P5 78 43 83 21 
P6 82 49 66 36 
S1 73 32 75 15 
S2 29 21 63 17 
S3 47 42 63 7 
S4 80 67 48 18 
S5 37 39 62 15 
S6 67 42 51 23 
S7 36 34 52 4 
S8 62 18 43 10 
S9 39 38 22 4 

TABLE III.  AVERAGE ROC AND PRC FOR THE SP DATASET; 
STATISTICALLY SIGNIFICANTLY (SS) BETTER RESULTS THAN BASELINE (*) 

IN BOLD; SS WORSE RESULTS THAN BASELINE IN ITALIC 

Algorithm ROC PRC 
NB Gaussian* 0.88 0.77 

NB Kernel 0.91 0.82 
SMO Linear C=0.1 0.88 0.71
SMO Linear C=1 0.88 0.71 

SMO Linear C=10 0.89 0.71 
SMO RBF C=0.1 0.84 0.63 
SMO RBF C=1 0.87 0.68 

SMO RBF C=10 0.90 0.74 
RIPPER opt=2 0.87 0.75 
RIPPER opt=5 0.88 0.75 
RIPPER opt=10 0.88 0.75 
Bagging OneR 0.85 0.68 

Bagging Naive Bayes 0.88 0.77 
Bagging J48 0.93 0.86 

 

Table IV presents the best results achieved for each sensor 
location with each type of classifier: NB Kernel, SMO RBF 
with C=10, RIPPER with 10 optimizations, and Bagging J48. 
The best performance was achieved with Bagging J48 for 
almost all positions, although the difference to NB Kernel was 
not statistically significant in any case. As expected, the best 
performance was achieved with the first sensor location, in the 
right side of the chest. If we consider explosive cough as the 
desired signal, this location is optimal because the signal-to-
noise ratio is the highest possible and the possible interference 
from heart sound is smaller than in the left side. 

Table V presents the best results achieved for each subject 
with each type of classifier. Areas under the ROC and PRC 
curves are both higher than 0.9 in seven patients when NB 
Kernel is used, and almost perfect performance was reached 
with subject 5. However, performance drops substantially 
with subjects 2 and 8. This drop in performance might be 
related to the inadequacy of the features for discriminating the 
sounds of this patient.  

TABLE IV.  AVERAGE ROC AND PRC OF EACH TYPE OF CLASSIFIER ON 
THE SENSOR POSITION DATASETS 

Datasets NB SMO RIPPER Bagging 
P1 0.94/0.91 0.91/0.78 0.86/0.71 0.95/0.92 
P2 0.95/0.86 0.94/0.80 0.87/0.69 0.94/0.88 
P3 0.91/0.86 0.89/0.76 0.84/0.68 0.92/0.87 
P4 0.93/0.89 0.92/0.77 0.89/0.77 0.94/0.89 
P5 0.92/0.86 0.90/0.76 0.86/0.77 0.93/0.88 
P6 0.86/0.78 0.86/0.69 0.80/0.60 0.89/0.83 

TABLE V.  AVERAGE ROC AND PRC OF EACH TYPE OF CLASSIFIER ON 
THE SUBJECT DATASETS 

Datasets NB SMO RIPPER Bagging 
S1 0.97/0.96 0.94/0.86 0.92/0.87 0.97/0.95 
S2 0.92/0.79 0.89/0.68 0.88/0.66 0.91/0.79 
S3 0.98/0.97 0.98/0.95 0.91/0.85 0.98/0.95 
S4 0.96/0.93 0.93/0.85 0.90/0.81 0.95/0.91 
S5 1.00/0.99 0.98/0.93 0.94/0.84 0.99/0.96 
S6 0.95/0.91 0.94/0.85 0.87/0.74 0.93/0.88 
S7 0.96/0.93 0.96/0.86 0.89/0.74 0.96/0.90 
S8 0.83/0.80 0.79/0.68 0.82/0.73 0.81/0.76 
S9 0.99/0.99 0.97/0.92 0.94/0.89 0.99/0.98 

 

Fig. 4 plots Pitch Inharmonicity against Flux Mean and 
allows us to compare the discriminative power of these 
features in the S5 and S8 data sets. When feature selection was 
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performed using the ReliefFAttributeEval algorithm [19] in 
Weka, these two features were ranked in the top 5 features for 
every data set except S9. Fig. 4 demonstrates how difficult 
was to discriminate explosive cough in S8 with these features, 
as instances of this class are located everywhere, while in S5 
they congregate around the right half of the plot. 

IV. CONCLUSION 

We presented a cough discrimination method based on a 
combination of spectral and pitch-related features. Four types 
of algorithms were used to classify segments of explosive 
cough against segments of three other classes: voiced cough, 
speech, and artifacts. The original database of 9 patients was 
partitioned in 16 different ways and the results demonstrated 
that it might be worth to follow the individualized approach 
for this problem. Performance improved substantially when 
each patient was analyzed separately. As high performance 
was not reached for two of the patients, in future work we 
intend to develop new features that easily adapt to each 
patient. 
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Fig. 4. Pitch Inharmonicity vs. Flux Mean in S5 and S8 
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