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Abstract Model checking has advanced over the last decades to become an
effective formal technique for verifying distributed and concurrent systems. As
computers grew in memory and processing capacity, it became possible to ex-
haustively verify systems with billions of states, making it practical to model
and verify real-world protocols and algorithms. However, writing a model is a
manual task that potentially introduces defects which the model checker tool
finds to fulfill the formal specification (e.g., an incorrect model that fulfills an
incomplete specification). Furthermore, this kind of formal verification tech-
nique is limited by the well known state-space explosion problem. This paper
aims to provide a set of generic template models, appropriate for distributed
round-based algorithms, to be used to focus modeling effort on algorithm-
specific details. To mitigate state-space explosion, the paper proposes two re-
duction techniques, named partition symmetry reduction and message order
reduction, that exploit symmetries in the state-space to avoid expanding equiv-
alent states. The reusable framework for verifying round-based algorithms and
the two proposed reduction techniques provide the means for reducing by or-
ders of magnitude the number of states required to analyse common distributed
algorithms.
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1 Introduction

Distributed algorithms are at the core of modern computing infrastructures
and have been the subject of substantial research. Although much progress has
been made in understanding fundamental problems such as consensus, reliable
multicast and atomic commit (Lynch, 1996), it is still notoriously difficult to
verify the correctness of reliable algorithms and to quantify their performance
and reliability.

Several factors make it difficult to analyze distributed systems, notably the
potential interleaving of events, asynchronous communication and failures, all
of which contribute to a combinatorial explosion of the space of reachable
states. Since one must usually cover all possible executions to guarantee cor-
rectness and adequate performance, it is often a challenge to ensure that a
distributed system is dependable and secure.

Model checking is widely regarded as an effective formal technique for ver-
ifying distributed systems and algorithms (Clarke et al., 2018). It consists of
checking whether a model fulfills a given specification, through exhaustive veri-
fication of the corresponding finite-state automaton. Specifications are given in
some form of logic (e.g., Computational Tree Logic, Linear Temporal Logic)
and models are written in a formal language to allow for rigorous analysis.
While model checking can verify complex systems with billions of reachable
states, the practical application is limited by computational constraints.

For a model checker to exhaustively verify whether a finite-state model of a
system meets the specified properties, all reachable states must be examined.
The state-space explosion problem arises whenever it becomes computationally
too expensive to analyze the full state-space. This is one of the main challenges
to the application of model checking to dynamic systems. Another fundamental
challenge is to manually construct a small sufficient model (Holzmann, 2003)
that correctly captures all relevant system details while resulting in a tractable
number of states for automatic analysis.

This paper addresses these two challenges in the context of distributed
systems using round-based algorithms (Lynch, 1996). The main contributions
are the following:

– Two reduction techniques to mitigate the state-space explosion problem.
We propose partition symmetry reduction (PSR) to reduce the state-space
by exploiting the symmetry that arises when processes choose a non-
deterministic initial value. Rather than exploring all possible combinations
of values for all processes, only the representative partitions are expanded.
This reduces the number of initial transitions performed by the model
checker. Furthermore, we propose message order reduction (MOR) that
exploits the observation that in round-based algorithms all messages are
received or missed in the same round in which they are sent. Therefore,
if an algorithm’s state-transition function is commutative (i.e., processing
order is irrelevant) then any possible transition results in the same local
state as a single representative order.
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– A reusable framework for verifying round-based algorithms. The paper pro-
vides a reusable template composed of a generic and a specific part. The
generic part is a model of round-based computation for distributed algo-
rithms and the specific part models the behavior of each concrete algorithm
that is to be verified. One who wishes to verify a new round-based algo-
rithm will focus the effort on the specific part of the model. The framework
includes an implementation of both reduction techniques (PSR and MOR)
written in Promela for the Spin model checker (Holzmann, 2003). The goal
is to reduce the effort of practitioners in verifying round-based protocols.

– A translation methodology for round-based algorithms to Symbolic Model
Checking. To evaluate the impact of both the framework and reduction
techniques on symbolic model checking approaches, we show how to encode
the algorithms and their specifications as a symbolic satisfiability problem,
taking advantage of advances in SMT solvers (Clarke et al., 2001) for model
checking.

– An experimental evaluation of both reduction techniques. Using well-known
protocols in the literature, we apply PSR and MOR to show that the
theoretical gains can be obtained in practical model checking applications.
In particular, we perform evaluation using the Spin Model Checker and Z3,
an SMT solver for the symbolic approach.

Our work addresses algorithms designed according to the round-based com-
putation model. Round-based algorithms (Charron-Bost and Schiper, 2009;
Gafni, 1998; Elrad and Francez, 1982) are structured in rounds of computa-
tion. At each round every process computes a new message exclusively based
upon the local state, sends the message to all processes, waits to receive mes-
sages from other processes, executes a local state-transition function based
upon incoming messages and advances to the following round. This structure
is explored in the present paper to construct small sufficient models for veri-
fying new algorithms.

The remainder of this paper is structured as follows. Section 2 summarizes
the related work in the field. Section 3 describes the computation model of
round-based algorithms and focuses on the key observations for writing a for-
mal model of such algorithms. Section 4 formalizes two algorithms that are
used in the paper as running examples. Sections 5 and 6 formalize the two re-
duction techniques proposed in this paper and Section 7 provides the proofs of
validity of the proposed reductions. Section 8 describes the full implementation
of the generic verification framework, in the Promela language, for the Spin
model checker. Section 9 provides a translation methodology from the Promela
templates to SMT encodings. Section 10 summarizes the main conclusions of
the paper and outlines implications for practice.

2 Related work

Temporal logic model checking (Clarke et al., 1986) automates the process
of verifying if a model fulfills a given specification. It is a form of deductive
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reasoning to formally verify finite state systems with concurrency and message-
passing. Correctness properties are expressed using temporal logic and the
model checker performs an exhaustive search to look for states in which some
property is violated. Exhaustive search without finding any counterexample
formally implies that the specification holds.

Exhaustively searching the state-space of an algorithm often leads to com-
binatorial explosion of possible executions, thereby consuming all available
memory or too much computation time. In this context, model checking tools
such as Spin make use of partial order reduction (Peled, 1994) to optimize the
search process. Partial order reduction exploits the fact that when two con-
current processes access only the local state, the transitions are commutative,
i.e., the same state results from choosing to execute the processes in any order.
The two reductions proposed in the present paper complement partial order
reduction and further eliminate equivalent states from the verification process.

Symbolic model checking (Burch et al., 1992) uses binary decision diagrams
to represent state-transitions and is widely used to formally verify hardware
systems (Eisner and Peled, 2002). Explicit-state model checking (Holzmann,
2003) exhaustively generates the graph of global states reachable by a sys-
tem and this approach is most frequently used for verifying distributed and
concurrent systems. The present paper addresses explicit model checking.

The key challenges in model checking are the manual construction of a sys-
tem model and the laborious task of mitigating the state-space explosion prob-
lem. To deal with these challenges, one should aim for the notion of smallest
sufficient model (Holzmann, 2003). A model must be a faithful representation
of the original system, while abstracting away irrelevant details to reduce the
state-space. This is often a delicate balance.

Combinatorial growth of the number of reachable system states has sparked
interest in research of methods to tackle this problem. Bounded model check-
ing (Tsuchiya and Schiper, 2008), symbolic verification (Clarke et al., 1996),
diverse techniques for model abstraction (Clarke et al., 1994, 2000) and par-
tial order reduction (Peled, 1994) all aim to mitigate the state-space explosion
problem. Furthermore, explicit model checkers have the ability to use com-
pression techniques to reduce the memory footprint of the verifier Holzmann
(2003). The present paper not only builds upon existing techniques (e.g., par-
tial order reduction and compression) but also proposes further reductions that
are applicable to the specific case of round-based algorithms (Lynch, 1996).

Other authors have proposed to use specific abstractions for fault-tolerant
distributed algorithms (Aminof et al., 2018). More generally, symmetry reduc-
tion techniques have proven useful to reduce the state-space explosion prob-
lem (Emerson and Sistla, 1996). The key idea, which we also adopt in the
present paper, is to exploit symmetries existing in the global system state to
mark equivalent states. This is usually performed by pruning the search when-
ever a state is revisited. Several practical implementations exist, including a
prototype implementation named SymmSpin (Bosnacki Dragan and Holender-
ski, 2002) for the Spin model checker. The reduction techniques proposed in
the present paper exploit symmetry in the state space beforehand, by avoiding
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the generation of symmetric states a priori, rather than waiting for a revisited
state.

Our work builds upon the notion of communication-closed rounds of com-
munication (Elrad and Francez, 1982) in which processes compute local state
transitions based upon the messages received from other processes. Because of
failures and asynchrony, we model message omissions from the receiving side,
similarly to the heard-of model (Charron-Bost and Schiper, 2009) that can be
used to model any kind of benign failure.

At this point, it is worthwhile discussing round-based probabilistic algo-
rithms, as well as asynchronous systems. A practical way of using asynchronous
systems is to use local clocks to delete late messages, as in the timed asyn-
chronous model (Cristian and Fetzer, 1999). We can follow the same approach
in round-based algorithms and model late messages as omissions, e.g., in asyn-
chronous round-based broadcast protocols (Srikanth and Toueg, 1987). A prob-
lem with this approach is that correct processes that have not crashed may
fail to send messages in time, thus making the failure model more complex.

One should notice that model checking does not suit probabilistic algo-
rithms well, as these may not be live against an adversary that always picks
an inconvenient random value. Hence, our technique would either not apply
or require some modifications for well-know algorithms, like the Ben-Or’s con-
sensus algorithm (Ben-Or, 1983).

In some specific systems, where variables have symmetric roles, e.g., where
a = 2, b = 1 and c = 0 represents a similar state to a = 1, b = 2 and c = 0, the
partition symmetry approaches may also simplify liveness or safety analysis.
This could be the case of counter machines (Minsky, 1961).

Under the heard-of model of received and missed messages, it is possible
to reduce the state-space by visiting less executions as long as the sequence of
events is preserved (Chaouch-Saad et al., 2009). The authors prove a reduc-
tion theorem, built upon the fact that rounds are communication-closed, by
distinguishing between fine-grained and coarse-grained executions. A coarse-
grained model is shown to be an abstraction of the fine-grained model, with
less state-transitions.

3 Communication model

A system is composed of n processes exchanging messages through directed
communication channels and computations consist of rounds. Round-based al-
gorithms (Gafni, 1998; Elrad and Francez, 1982) follow a well-defined pattern:
at each round every process computes a new message exclusively based upon
the local state, sends the message to all processes, waits to receive messages
from other processes, executes a local state-transition function based upon
incoming messages and advances to the following round.

Under this communication model two practical consequences are relevant.
If a message is received during some round, then it must have been sent during
that round. If a message is missed during some round, then it is discarded (in-
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tentionally, if needed, by dropping the message if it arrives at a later round).
Hence, message omissions and process crashes/hangs are given uniform treat-
ment without the need to consider the root cause (Santoro and Widmayer,
2005).

An implementation of round-based communication requires strong guar-
antees that are abstracted using the notion of round-by-round fault detec-
tor (Gafni, 1998). Every process has a local module that provides, for each
round, the set of processes from which no message should be expected. The root
cause for such failures is abstracted away, thereby unifying process failures,
link failures and network asynchrony. This communication model is widely
adopted and there is vast literature on specific challenges such as round-based
consensus (Marić et al., 2017; Garćıa-Pérez et al., 2018; Raynal, 2018).

Algorithm 1: Structure of processes in round-based algorithms.

loop forever:
begin round()
msg = compute message()
send to all(msg)
wait to receive()
state transition()
end round()

end

Algorithm 1 shows the structure of a process according to the round-based
pattern of distributed communication. Every process has a local state that de-
pends on the particular protocol being modeled. Six different functions access
the local state and compute the necessary transitions. It is worthy to note
that only two of these functions are protocol-specific: the compute message

function that determines the new message based exclusively upon the local
state; and the state transition function that reads all received messages
and computes the new local state for the process.

In this computation model, failures and asynchrony can be specified in
terms of heard-of sets (Charron-Bost and Schiper, 2009), which are the sets
of processes from which every process receives a message in every round. For-
mally, considering Π the set of n processes, the set HO(p, r) ∈ Π contains the
processes from which p receives a message in round r. In our models, the same
notion is formalized as an rm vector (i.e., a representation of the received mes-
sages during each round). Under these conditions, in any sequence of rounds
(finite or infinite) the local states of processes are uniquely determined by
initial non-deterministic values selected and by the sets of received messages.

4 Protocols

We illustrate our reduction techniques with the help of two protocols: the
FloodSet (Lynch, 1996) and Herlihy’s n-process consensus (Herlihy, 1991).
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Algorithm 2: FloodSet Consensus algorithm in a synchronous sys-
tem (Lynch, 1996)

// Algorithm for process pi ∈ g
On initialization:

V alues1i = {vi}
V alues0i = {}

end
In round r, for 1 ≤ r ≤ f + 1:

// Send only values not sent yet

B-multicast(g, V aluesri \ V aluesr−1
i )

V aluesr+1
i = V aluesri

On B-deliver(Vj) from some process pj :

V aluesr+1
i = V aluesri ∪ Vj

end

end
After f + 1 rounds:

di = min(V aluesf+1
i )

end

The FloodSet consensus, in Algorithm 2, tolerates up to f process stopping
failures and runs in f + 1 rounds. Initially, each process picks its own value
vi and sends this value to the peers. Since faulty processes might deliver their
values to a subset of the correct processes before stopping, the main challenge
is to propagate such values to every non-faulty process. For this end, each
process uses best-effort multicast (B −multicast), which, in the worst case,
might need up to f+1 rounds to cope with f failures. Once processes converge
in the set of values (V alues), they can use a deterministic function over the
set, like the minimum function, to determine the agreed value.

Algorithm 3: Compare&Swap
Data: register r, old value in the register, new value to set to the register
Result: Return the value of the register r at call time and conditionally change it
previous = r
if previous = old then

r = new
end
return previous

Before introducing the n-process consensus, we review the Compare&Swap
primitive. Although this is not apparent in Algorithm 3, this primitive is
atomic; intuitively, we can think as if no two processes could be inside the
function at the same time. Processes compete to change the value of register
r: if they arrive on time, the comparison previous = old will be true and the
change will occur; otherwise it will not.

Based on the compare-and-swap operation, the n-process consensus, in Al-
gorithm 4, returns either the input or the first value set on the Compare&Swap
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Algorithm 4: n-process consensus with compare and swap (Herlihy,
1991)

Data: Proposed value input; shared register
Result: The agreed value
first = Compare&Swap(shared,⊥, input)
if first == ⊥ then

return input
else

return first
end

register. Only the first process arriving will manage to change the register ac-
cording to its input; all the following will see the input set by the first one.
Assuming the availability of the Compare&Swap primitive, this algorithm is
wait-free: non-faulty processes can finish the algorithm in a finite number of
steps, regardless of other process behaviours.

5 Partition symmetry reduction

A frequent pattern in distributed algorithms is the non-deterministic selection
of an initial value for each process. Notable examples are the consensus problem
and leader election. Each of the n processes begins by selecting one out of n
possible values, giving rise to nn distinct possibilities during initialization, even
before the distributed algorithm is executed.

We propose a technique hereby referred to as partition symmetry reduction
to expand fewer initial combinations of values. To illustrate with an example,
consider a set of 4 processes that may select one out of 4 possible initial values.
Full state-space analysis would result in 44 = 256 possibilities. However, if
the set of values is unordered, there is no need to consider all permutations.
Instead, one may expand only the partitions of n. In number theory, a partition
of natural number n is one way to write the number as a sum of natural
numbers (Bóna, 2002). When n = 4 the five possible partitions are 1+1+1+1,
2+1+1, 2+2, 3+1 and 4. Respectively, the 4 processes choose distinct values,
two processes choose the same value and two processes choose distinct values,
two processes choose the same value and the other two choose another value,
three processes choose the same value and the other process chooses a distinct
value, and the 4 processes choose the same value. Hence, a system with n = 4
has 44 = 256 permutations with repetition while having only five partitions.

The partition function p(n) yields the number of partitions of natural num-
ber n and was notably studied by Euler. Natural numbers here correspond to
the positive integers. The asymptotic formula

p(n) ∼ 1

4n3
1
2

eπ(
2n
3 )

1
2 (1)
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has been known for over a century (Hardy and Ramanujan, 1918; Erdős, 1942)
and it is trivial to prove that

lim
n→∞

p(n)

nn
= 0 (2)

implying that symmetry reduction by expanding only the partitions of n,
rather than the full set of permutations with repetition, results in a much
smaller state-space.

Figure 1 presents a complete model of Herlihy’s wait-free consensus proto-
col for n processes (Herlihy, 1991). The presented model is written for the Spin
model checker (Holzmann, 2003) and is therefore formalized in the Promela
language.

Fig. 1 Wait-free n-process consensus protocol formalized in Promela.

1 #define n 5
2

3 byte r;
4 byte ghost;
5

6 inline compare_and_swap(r, old , new , result) {
7 atomic {
8 previous = r;
9 if

10 :: previous == old -> r = new
11 :: else -> skip
12 fi;
13 result = previous
14 }
15 }
16

17 proctype Process(byte input) {
18 byte previous , first , decision;
19 compare_and_swap(r, 0, input , first);
20 if
21 :: first == 0 -> decision = input
22 :: else -> decision = first
23 fi;
24 ghost = decision;
25 assert(ghost == decision)
26 }
27

28 init {
29 byte v, i;
30 atomic {
31 for(i : 1 .. n) {
32 select(v : 1 .. n);
33 run Process(v)
34 }
35 }
36 }

The init process in Figure 1 formally specifies the initialization procedure
frequently constructed when modeling distributed algorithms. A loop iterates
from 1 through n and the select statement chooses an initial value v for
each process that is started with the run statement. Clearly, non-deterministic
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selection of n values for n processes results in full state-space analysis for all
permutations.

Figure 2 provides an implementation of the proposed partition symmetry
reduction technique. The init process computes the possible partitions of n
processes and serves as a drop-in replacement for the init process presented
in Figure 1. It can be reused in similar contexts and, conceptually, it could be
built into an existing model checker by extending the modeling language.

Fig. 2 Formalization of partition symmetry reduction in the Promela language.

1 init {
2 byte partition[n]; // holds the current partition
3 byte v, i = 1; // i points to the partition ’s end
4 byte count; // counts processes in each group
5 partition [0] = n; // the initial partition is just [n]
6 atomic {
7 do
8 :: partition [0] != 1 -> // if more partitions exist
9 v = 1; // compute the next partition

10 do
11 :: partition[i-1] == 1 ->
12 i--; // index of last element > 1
13 v++ // elements to be updated
14 :: else -> break
15 od;
16 partition[i-1]--; // update partition elements
17 do
18 :: partition[i-1] < v ->
19 v = v - partition[i-1];
20 partition[i] = partition[i-1];
21 i++
22 :: else -> break
23 od;
24 i++;
25 partition[i-1] = v
26 :: true -> // use the current partition
27 v = i; // begin with highest value
28 count = 0;
29 do
30 :: count < partition[v-1] ->
31 run Process(v); // start and count processes
32 count++ // in group that has value v
33 :: else ->
34 v--;
35 count = 0;
36 if
37 :: v == 0 -> break // end with lowest value
38 :: else -> skip
39 fi
40 od;
41 assert(_nr_pr == n+1);
42 break
43 od
44 }
45 }

The proposed implementation of partition symmetry reduction, in the
Promela language, presented in Figure 2, consists of an outer do-loop that
calculates the possible partitions of n processes in lexicographic order. It be-
gins with the partition composed of n itself and iteratively computes the fol-
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lowing partitions. The do-loop has two alternatives: choosing line 8 calculates
the next partition; choosing line 26 uses the current partition to run the pro-
cesses. These two alternatives are non-deterministic because the guards may
overlap, i.e., at each execution of the do-loop the model checker can either
select to compute the next partition (in line 8 the guard evaluates to true

while there are more partitions left) or select to use the current partition (in
line 26 the guard is always true). The assert statement in line 41 formalizes
a trivial correctness check imposing that the number of processes equals n+ 1
(n processes initialized plus the init process).

The initial partition, which consists of n itself, leads to all processes select-
ing the same value. The last possible partition consists of 1 + 1 + ...+ 1 adding
up to n and leads to all processes selecting distinct values. Non-deterministic
transitions allow anything in between these two extremes to be executed.

In Figure 1 the init process runs a new process in line 33 by passing
as argument the non-deterministic value v. Using partition symmetry reduc-
tion, in Figure 2 the init process runs a new process in line 31 by passing
the value v of the partition in which that process was non-deterministically
placed. Therefore, the init processes in Figures 1 and 2 are interchangeable
and correspond, respectively, to disabling and enabling partition symmetry
reduction.

Partition symmetry reduction is valid under the condition that the set of
values selected by processes is unordered. This condition is met by Herlihy’s
wait-free consensus protocol given the fact that initial values have no semantics
and process identifiers are never used to distinguish behavior among different
processes. These characteristics are common to a wide range of distributed and
concurrent algorithms and, hence, the proposed reduction is valid for those
algorithms. Constructing a static analyser to automatically check whether an
algorithm meets these conditions is an interesting research question for future
work.

5.1 Experimental evaluation

To compare full state-space analysis with partial symmetry reduction, we exe-
cuted exhaustive verification runs using the Spin model checker with n ranging
from 2 to 9 processes. The results are presented in Table 1.

The results were obtained using Spin version 6.5.0 running on a 2.7GHz
Intel Core i7 with 16GB of 2133MHz RAM. The verifier generated by Spin
was compiled with the collapse directive, to reduce memory by compressing
the state vector, and with the safety directive, to optimize both speed and
memory by disabling cycle detection. The verifier was compiled with the -O2

optimization flag and Spin’s partial order reduction was enabled.
Table 1 compares the results of partition symmetry reduction with full

state-space analysis of Herlihy’s wait-free consensus protocol for n processes.
The columns on the left hand side show how the number of states, the memory
used for states and the verification time grow with the reduction technique
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Table 1 Verification results for Herlihy’s wait-free consensus protocol.

Partition symmetry reduction Full state-space
n States Memory Time States Memory Time Ratio
2 99 0.3 MB ∼0 s 183 0.3 MB ∼0 s 54.10%
3 1028 0.3 MB ∼0 s 8314 0.6 MB ∼0 s 12.36%
4 10882 0.7 MB ∼0 s 4.9×105 18.8 MB ∼0 s 2.22%
5 8.9×104 3.6 MB ∼0 s 3.4×107 1.4 GB 30 s 0.26%
6 7.7×105 29.7 MB ∼0 s — — — —
7 5.6×106 245.0 MB 4 s — — — —
8 4.2×107 2.0 GB 42 s — — — —
9 2.8×108 14.3 GB 439 s — — — —

enabled (using the init from Figure 2) whereas the columns on the right
hand side show the same results without reduction (using the complete code
from Figure 1 unmodified). The rightmost column provides the ratio between
the number of states required by disabling/enabling the reduction.

There are two main observations from the results in Table 1. First, for a
system with n = 5 the state-space is three orders of magnitude smaller by using
partition symmetry reduction. This is very much in line with the theoretical
observation that 55 = 3125 permutations with repetition, while p(5) = 7
possible partitions for 5 processes, yielding the exact ratio of 7÷3125 = 0.224%
which is close to the 0.26% ratio obtained using Spin.

Second, it was possible to exhaustively verify systems composed of up to
n = 9 processes using partition symmetry reduction, while n = 6 exhausted
the 16GB of available memory using full state-space verification without com-
pleting the verification process. Once main memory is fully occupied the swap-
ping strategy renders the model checking process impractically slow. Hence,
for Herlihy’s protocol, the proposed reduction allows systems with n = 9 pro-
cesses, in present workstations, and nearly doubles the number of processes
that are verifiable by default.

6 Message order reduction

Most distributed algorithms are designed to handle non-deterministic order
of message exchanges, as this is the norm in real systems. It is frequently
the case that the order in which messages are sent, received and processed is
irrelevant for the final result. This is the basis for the technique of message
order reduction.

Regardless of the order in which messages are transmitted, it is preferable
to reach a deterministic result, instead of leaving it to chance. Therefore, most
algorithms ensure this property by design. Round-based algorithms provide a
convenient abstraction built around this property. At each round, every process
computes the message to be sent, sends the message to all processes, waits to
receive all messages and executes a local state-transition function to compute
the new state. When the order of message transmission is irrelevant, one may
select any specific order as representative of all orders.
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Figure 3 presents a complete model of the algorithm for synchronous con-
sensus described in Lynch’s book (Lynch, 1996). The presented model, for the
Spin model checker, is a direct formalization of the algorithm written in the
Promela language.

Fig. 3 Synchronous consensus algorithm formalized in Promela.

1 #define n 4
2 #define f 1
3

4 chan channels[n] = [n] of { byte };
5 byte round = 1, nr_faulty = 0, nr_active = 0, decision;
6

7 proctype Process(byte v; chan c) {
8 byte values = 1 << (v-1);
9 byte r = 1, t;

10 do
11 :: r >= 1 && r <= f+1 ->
12 t = 0;
13 do
14 :: t < n ->
15 if
16 :: atomic { nr_faulty < f -> nr_faulty ++; }
17 end: (false)
18 :: true -> skip
19 fi;
20 channels[t] ! values;
21 t++
22 :: else -> break
23 od;
24 do
25 :: nempty(c) ->
26 c ? t;
27 values = values | t
28 :: round != r -> break
29 od;
30 r++
31 :: r > f+1 -> break
32 od;
33 t = 0;
34 do
35 :: values & (1 << t) -> break
36 :: else -> t++
37 od;
38 v = t+1;
39 decision = v;
40 assert(decision == v);
41 nr_active --
42 }
43

44 init {
45 byte r, i;
46 atomic {
47 for(i : 1 .. n) {
48 select(r : 1 .. n);
49 run Process(r, channels[i-1]);
50 nr_active ++
51 }
52 }
53 do
54 :: timeout && (nr_active - nr_faulty) >= 1 -> round++
55 :: (nr_active - nr_faulty) == 0 -> break
56 od
57 }
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One of the main causes of the complexity of verifying a model like the
one presented in Figure 3 rests in the order that messages are transmitted
and processed by receiving nodes. Each of the n processes has a channel for
incoming messages. The do-loop in lines 13–23 sends the current message to
all processes (containing the values received). Given that this loop executes
concurrently across all processes, any interleaving is possible and the model
checker expands a vast number of states.

However, as can be observed both in Figure 3 and in Algorithm 2, regardless
of the order of message transmission the local states of processes are the same
at the end of every round (only failures and especially omissions have an effect).
On delivery of Vj from some process pj the set of values becomes the union of
previously received values with the newly received values (line 27 in Figure 3).
This operation is clearly commutative. Hence, the proposed message order
reduction is valid for Lynch’s synchronous consensus protocol. In fact, most
protocols are designed this way to ensure the end result is independent of the
order of transmission.

The code in Figure 3 initializes n processes in lines 46–52. Each process
has a channel c to receive incoming messages. The set of values received from
other processes is stored using bitwise operations in the values variable, which
is initialized in line 8 with the non-deterministic value initially selected for
the process. At each round, processes may fail by blocking in the end label
in line 17, or otherwise send the values variable to all processes in line 20.
Thereafter, the do-loop starting in line 24 reads all received messages and
computes the local-state transition in line 27 by adding the received values
to the values set. Once the execution of the protocol is completed, lines 39
and 40 formally specify that the decision made by any process is the same as
the decision of any other process, i.e., agreement.

The complexity of the verification procedure is influenced by the number
of permutations of n messages transmitted by each of the n processes in every
round. Each incoming channel has n! possible permutations of the n messages
and, therefore, globally there are n×n! possibilities at the end of every round.
Given that message order reduction only expands one such permutation, the
resulting state-space is much smaller.

Figure 4 shows a modified version of the consensus protocol formalizing
the proposed message order reduction. A token is used to impose sequential
sending and reception of messages.

The Promela code shown in Figure 4 maintains the same overall structure
as the full state-space version in Figure 3. The token variable makes processes
send messages in sequential order through blocking in line 12 and subsequently
passing the token in line 31. Messages are also received in sequential order
through blocking in line 32 and passing the token in line 40.

Table 2 summarizes the verification results and compares full state-space
analysis (code from Figure 3) with message order reduction (code from Fig-
ure 4). The left hand side of the table shows the configuration regarding the
number of processes n and the number of failures f occurring during execution.
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Fig. 4 Synchronous consensus with message order reduction.

1 #define n 5
2 #define f 1
3

4 chan channels[n] = [n] of { byte };
5 byte token = 1, nr_faulty = 0, decision = 0;
6

7 proctype Process(byte v; chan c) {
8 byte values = 1 << (v-1);
9 byte r = 1, t;

10 do
11 :: r >= 1 && r <= f+1 ->
12 (token == _pid); // send in order
13 t = 0;
14 do
15 :: t < n ->
16 atomic {
17 if
18 :: nr_faulty < f ->
19 nr_faulty ++;
20 end_faulty:
21 (token == _pid);
22 token = token % n + 1;
23 goto end_faulty
24 :: true -> skip
25 fi
26 }
27 channels[t] ! values;
28 t++
29 :: else -> break
30 od;
31 token = token % n + 1; // pass the token
32 (token == _pid); // receive in order
33 do
34 :: nempty(c) ->
35 c ? t;
36 values = values | t
37 :: empty(c) -> break
38 od;
39 r++;
40 token = token % n + 1 // pass the token
41 :: r > f+1 -> break
42 od;
43 t = 0;
44 do
45 :: values & (1 << t) -> break
46 :: else -> t++
47 od;
48 v = t+1;
49 decision = v;
50 assert(decision == v)
51 }

The results presented in Table 2 were obtained using exactly the same
hardware and software configuration as the results in the preceding section.
The columns on the left hand side show the number of states, the memory used
and the verification time using the reduction techniques. The columns on the
right hand side show the same results without the reduction. The rightmost
column presents the ratio between the number of states required using the
reduction and the default state-space analysis.
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Table 2 Verification results for the synchronous consensus protocol.

Message order reduction Full state-space
n, f States Memory Time States Memory Time Ratio
2,1 1636 0.1 MB ∼0 s 5135 0.4 MB ∼0 s 31.9%
2,2 3192 0.3 MB ∼0 s 9091 0.7 MB ∼0 s 35.1%
3,1 59426 5.7 MB ∼0 s 5.1×106 485.8 MB 2 s 1.2%
3,2 4.0×105 37.7 MB ∼0 s 8.9×106 847.5 MB 4 s 4.5%
4,1 2.3×106 252.4 MB 1 s — — — —
4,2 3.1×107 3.4 GB 19 s — — — —
5,1 1.1×108 13.2 GB 91 s — — — —

Two main observations can be made from the results presented in Table 2.
First, a system with n = 3 has a state-space that is between one and two
orders of magnitude smaller by using message order reduction (both for f = 1
and f = 2). This is in line with the theoretical observation that 1 permutation
of messages is expanded rather than 3 × 3! = 18, resulting in the ratio of
1÷18 ≈ 5.6%. For n = 2 processes the ratio is also close to the ratios obtained
in practice using Spin.

The second observation is that it is possible to verify systems with up
to n = 5 processes using message order reduction, whereas n = 3 was the
maximum achievable with full state-space verification, limited by 16GB of
memory (with n = 4 the verification process used up all memory and started
the swapping mechanism). Therefore, for the synchronous consensus protocol,
the proposed message order reduction allows one to increase from n = 3 to
n = 5 processes in present workstations.

7 Proofs of reduction techniques

The reasoning behind the proposed reduction techniques is based upon ob-
servations of the kinds of behaviour that can be abstracted from the models,
while retaining sufficient detail for the verification process. In this section we
construct proofs of the reduction techniques.

7.1 Partition symmetry reduction

Consider A to be a round-based algorithm. Without loss of generality, we
assume that the state of each process is a positive integer of arbitrary size.
The state of a failed process is 0, which we assume to be its output as well. No
other process has state 0. Each round, a process sends its state in a message to
the peers. Transition from one round to the next in A is, therefore, a function
f : Nn0 → Nn0 , for n processes. Process i uses the global state exchanged in the
round, to produce its own state, which is the ith component of f ’s output.

We restrict our demonstration to algorithmsA characterized by a “permuta-
tion-resistant” function f , such that for any permutation P , P · f · P−1 = f ,
where “·” means “after”. As an example, if f([1, 2, 1]) = [3, 4, 3], a permutation
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that switches the last two elements in the input will do the same to the output:
f([1, 1, 2]) = [3, 3, 4]; that is, we apply in the output the inverse permutation
we applied to the input. This happens, for example, when the output of f is
the most common value in the messages. It does not happen if the function
selects as outputs the first element of the input.

We can now build the similar notion of “permutation-resistant assertion”.
In a “permutation-resistant assertion”, if assertion Q is true for the state vec-
tor v, it is also true after any permutation P , such that w = P (v). Based
on these definitions, in Theorem 1, we demonstrate the validity of the par-
tition symmetry reduction for a round-based algorithm A characterized by a
permutation-resistant function.

Theorem 1 A permutation-resistant assertion on A, characterized by a permuta-
tion-resistant function, is always true under partition symmetry reduction (C1)
if and only if it is also always true without partition symmetry reduction (C2).

Proof The theorem states the equivalence between two conditions, such that
C1 ⇔ C2. C2 ⇒ C1 is trivial to prove. Since the space of cases without partition
symmetry contains the space with partition symmetry reduction, if all cases
are true in the larger space, they are also true in the contained space.

To see that C1 ⇒ C2, we reason as follows: having two successive rounds
where we apply P on the inputs and P−1 on the outputs for both rounds
is the same as applying only P on the inputs of the first round and P−1

on the outputs the second round. I.e., f · f = P · f · P−1 · P · f · P−1 =
P · f · f · P−1. By induction, we can apply this reasoning to r rounds. This
corresponds to converting the inputs on the first round and, upon getting
the final result, converting it back using the inverse permutation. Given the
permutation-resistant assertion, the theorem follows.

7.2 Message order reduction

Assume that B is a round-based algorithm, where each process determines
its state transition based on the set of messages it received so far. This is a
subset of the round-based algorithms of Algorithm 1, where the order of the
received messages is not relevant; only the messages (and the ones that the
process misses) are relevant. This is true whenever the operation performed
on the messages is commutative and associative, a common case in reality
often explored by reduce() operations, such as in the Message Passing Inter-
face (Hughes and Hughes, 2003) or the MapReduce (Dean and Sanjay Ghe-
mawat, 2004) programming model. In Theorem 2, we demonstrate the validity
of message order reduction:

Theorem 2 Assertions on B are always true under message order reduction
(C1) if and only if they are also always true without message reduction (C2).

Proof Similarly to the previous case, the theorem states the equivalence C1 ⇔
C2. C2 ⇒ C1 is trivial to prove. Since the space of cases without message
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reduction contains the space with message reduction, if all cases are true in
the larger space, they are also true in the contained space.

For C1 ⇒ C2, assume that C1 holds, but C2 does not. This would mean
that all cases with order reduction are true, while, at least one case without
order reduction is not true. Since, for the same set of messages, both cases
take the same decision, then, the case without order reduction must find a
specific set of messages, which does not exist with message reduction, where
the assertion is false. But this is a contradiction, because the case with order
reduction should find all possible sets of messages.

8 Reusable verification framework for round-based algorithms

We now turn to specifying a generic framework for verifying round-based al-
gorithms. The goal is to provide a reusable template comprised of two parts:
a generic part that models the round-based computation model of distributed
systems; and a specific part that models the behavior of each concrete proto-
col. If one wishes to model and verify a new algorithm, only the specific part
requires effort.

Figure 5 provides the proposed generic model of round-based algorithms,
for the Spin model checker. A process follows the elementary structure shown
in Algorithm 1, whereby at each round a new message is computed, sent to
all processes, a wait is performed to receive incoming messages and a state-
transition function computes the state for the next round. This is modeled in
lines 32–39 in Figure 5.

The generic model shown in Figure 5 declares one broadcast channel for
each processes, used to send messages. A token variable is declared to synchro-
nize processes while sending and receiving messages. For a process to begin a
round, it blocks until the token reaches its pid, as written in line 5, to wait for
its turn. It sends its msg variable to all processes by calling the inline function
in lines 17–23. This function sends the message to the broadcast channel just
after ensuring that the broadcast channel is empty. Then, the process passes
the token to the next process, in line 13, and waits for the appropriate turn in
line 14. The round ends in line 9 simply by passing the turn and the do-loop
begins again for the subsequent round.

The code in Figure 5 provides the generic part of round-based algorithms.
This is the reusable system model. Regarding the specific part of an algorithm,
one should write the code for inline functions compute message (called in
line 34) and state transition (called in line 37). The first inline function
reads the current local state of the process and updates the msg variable; and
the second function reads all received messages and updates the local state.

Figure 6 provides the algorithm-specific functions for the one third rule
protocol as specified in (Charron-Bost and Schiper, 2009). Computing the
message to be sent requires a single instruction, given that the message always
contains the value of x, which is the value currently proposed by the process.
The state-transition function is executed at the end of each round, by each
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Fig. 5 Reusable verification framework for round-based algorithms.

1 chan broadcast[NPROC] = [1] of {message}
2 byte token;
3

4 inline begin_round () {
5 (token == _pid)
6 }
7

8 inline end_round () {
9 token --

10 }
11

12 inline wait_to_receive () {
13 token --;
14 (token == _pid)
15 }
16

17 inline send_to_all(m) {
18 if
19 :: nempty(broadcast[_pid -1]) -> broadcast[_pid -1] ? _
20 :: empty(broadcast[_pid -1]) -> skip
21 fi;
22 broadcast[_pid -1] ! m
23 }
24

25 inline receive(m, id) {
26 broadcast[id] ? <m>
27 }
28

29 proctype Process () {
30 byte i, j, k, l;
31 message msg;
32 do
33 :: begin_round ();
34 compute_message(msg);
35 send_to_all(msg);
36 wait_to_receive ();
37 state_transition ();
38 end_round ()
39 od
40 }

process. The local values are updated to include all received values during
the current round. This is performed in lines 8–16. If the process receives
more than two thirds of the messages, then variable l will hold the smallest
most frequent value and x will be updated to that value (line 29). The final
if statement asserts that all processes make the same decision using a ghost
variable.

Algorithm-specific structures and state information are shown in Figure 7.
The global message format is declared in lines 3–5 and contains a single value
representing the proposal of a process. Lines 7–13 define the local state of each
process and line 15 declares one such local state for each of the n processes.
Line 16 provides a shorthand notation for each process to access the local
state, which is not only practical but also avoids common errors such as a
process accessing other processes’ values.

Figure 8 shows the init process which runs the n processes and calls a
system-wide initialization hook named system init and, at every round the
system every round inline function.
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Fig. 6 Specific inline functions modeling the one third rule algorithm.

1 inline compute_message(m) {
2 m.value = local.x
3 }
4

5 inline state_transition () {
6 d_step {
7 local.rmcount = 0;
8 for(i : 0..( NPROC -1)) {
9 if

10 :: local.rm[i] ->
11 receive(msg , i);
12 local.values[i] = msg.value;
13 local.rmcount ++
14 :: else -> skip
15 fi
16 }
17 if
18 :: local.rmcount > (2* NPROC /3) ->
19 l = 0;
20 for(i : 1..( NPROC)) {
21 k = 0;
22 for(j : 0..( NPROC -1)) {
23 if
24 :: local.values[j] == i -> k++
25 :: else -> skip
26 fi
27 }
28 if
29 :: k > l -> local.x = i; l = k
30 :: else -> skip
31 fi
32 }
33 :: else -> skip
34 fi;
35 if
36 :: l > (2* NPROC /3) && local.decision == 0 ->
37 local.decision = local.x;
38 ghost = local.decision;
39 assert(local.decision == ghost)
40 :: else -> skip
41 fi
42 }
43 }

Fig. 7 Specific variables and structures modeling the one third rule algorithm.

1 #define NPROC 4
2

3 typedef message {
4 byte value
5 }
6

7 typedef p_state {
8 bool rm[NPROC];
9 byte x;

10 byte decision;
11 byte values[NPROC];
12 byte rmcount
13 }
14

15 p_state state[NPROC];
16 #define local state[_pid -1]



Formal Verification of Distributed Round-based Algorithms 21

Fig. 8 Initialization of processes and round-by-round synchronization.

1 init {
2 byte i, j, a = ALPHA;
3 bool synchronous = false;
4 system_init ();
5 atomic {
6 for(i : 1..( NPROC)) {
7 run Process ()
8 }
9 }

10 do
11 :: (token == 0);
12 system_every_round ();
13 token = NPROC;
14 (token == 0);
15 token = NPROC
16 od
17 }

Fig. 9 Specific functions to initialize processes and update received-message sets.

1 inline system_init () {
2 j = 1;
3 for(i : 0..( NPROC -1)) {
4 state[i].x = j;
5 if
6 :: j++
7 :: skip
8 fi
9 }

10 }
11

12 #define ALPHA 1
13

14 inline system_every_round () {
15 if
16 :: a == 0 -> synchronous = true
17 :: else -> a--
18 fi;
19 for(i : 0..( NPROC -1)) {
20 for(j : 0..( NPROC -1)) {
21 if
22 :: synchronous || i == j -> state[i].rm[j] = true
23 :: else ->
24 if
25 :: state[i].rm[j] = true
26 :: state[i].rm[j] = false
27 fi
28 fi
29 }
30 }
31 }

The system every round inline function is responsible for updating the rm
sets. It chooses whether process i receives the message from process j during
the round that is about to start. Therefore, this inline function is called just
before every new round to set the received messages set in a non-deterministic
way.

It is noteworthy that the system every round inline function has the po-
tential to generate an immense number of states. For a system with n pro-
cesses, there are n2 distinct message deliveries, of which n × (n − 1) might
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Table 3 Framework results for the one third rule algorithm.

Partition symmetry reduction Framework
n States Memory Time States Memory Time Ratio
2 686 0.3 MB ∼0 s 665 0.3 MB ∼0 s 103.2%
3 22499 1.4 MB ∼0 s 29971 1.8 MB ∼0 s 75.1%
4 3.3×106 192.7 MB 2 s 5.3×106 308.7 MB 3 s 62.3%

be unreliable (depending on the specific communication system being mod-
eled). Therefore, at each round, there are 2n×(n−1) possible combinations for a
fully asynchronous system in which all messages might be lost. Consequently,
although we mitigate the state-space explosion problem using the proposed
reduction techniques, the complexity of the verification process is still expo-
nential in the number of processes.

8.1 Experimental results

Tables 3 and 4 summarize the verification results of using the framework to
verify the one third rule algorithm. The framework’s code implicitly includes
message order reduction, as can be seen in Figure 5, where processes wait on
the token variable to begin every new round and to receive all messages.

Furthermore, we have collected results of partition symmetry reduction by
using the code in Figure 2 at the system initialization code in Figure 9. The
code of the system init inline was replaced by the code in Figure 2, with
a single modification to substitute run Process(v) with state[i].x = v to
initialize the process values.

Table 3 shows the verification results, obtained using exactly the same
hardware and software configuration as the results in the preceding sections.
The right hand side of the table provides the framework’s results, including
message order reduction. The left hand side of the table provides the results of
enabling partition symmetry reduction, in addition to message order reduction.

One observation that can be made from these results is that for n = 4 the
state-space is relatively large. In fact, for n = 5 the model checker exhausted
the available memory without completing the verification. Another observation
is that partition symmetry reduction has a modest improvement to the results.
As discussed in the preceding section, communication failures generate an
exponential number of states. Hence, the main source of complexity in this
model is the combinations of failures.

To further examine the issue of communication failures, Table 4 provides
the results of verifying the one third rule protocol with a bounded number
of failures. It is feasible to verify systems with n = 8 processes and one may
observe that partition symmetry reduction has a greater impact for systems
composed by a large number of processes. These results, along with the re-
sults presented in the preceding sections, substantiate the practical use of the
framework and the reductions.
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Table 4 Framework results for the one third rule algorithm, with bounded failures.

Partition symmetry reduction Framework
n, f States Memory Time States Memory Time Ratio
4,1 14541 1.1 MB ∼0 s 22352 1.5 MB ∼0 s 65.1%
4,2 75918 4.6 MB ∼0 s 119621 7.1 MB ∼0 s 63.5%
4,12 3.4×106 195.1 MB 2 s 5.4×106 312.1 MB 3 s 63.0%
5,1 43208 2.9 MB ∼0 s 96842 6.1 MB ∼0 s 44.6%
5,2 3.8×105 23.1 MB ∼0 s 8.6×105 56.0 MB ∼0 s 44.2%
5,5 3.4×107 2.4 GB 39 s 7.8×107 5.5 GB 78 s 43.6%
6,1 1.3×105 9.7 MB ∼0 s 3.7×105 26.8 MB ∼0 s 35.1%
6,2 1.7×106 120.6 MB ∼0 s 4.9×106 363.3 MB 3 s 34.7%
6,3 1.6×107 1.1 GB 12 s 4.5×107 3.4 GB 48 s 35.6%
7,1 3.1×105 23.9 MB ∼0 s 1.3×106 101.8 MB 1 s 23.8%
7,2 5.7×106 427.1 MB 4 s 2.4×107 1.9 GB 22 s 23.8%
7,3 7.3×107 5.6 GB 83 s — — — —
8,1 7.4×105 60.0 MB 1 s 4.2×106 354.1 MB 3 s 17.6%
8,2 1.8×107 1.4 GB 17 s 1.1×108 8.9 GB 130 s 16.4%

9 Translation to logic-based symbolic model checking

The Spin model checker performs an exhaustive search over all possible exe-
cution paths of a given Promela program. An alternative to this approach is
to use a logic-based symbolic model checker (Clarke et al., 2001), which does
not necessarily explore all the states, but instead uses the logical structure of
the formulation to verify if an error can occur in that model.

Over the last decades, SMT and SAT solvers have improved significantly
Fichte et al. (2020) and can provide a better performance than exhaustive
search. Here, we present an approach for converting Promela models to SMT
encodings, so these techniques can be applied to the same problem.

We present a translation from the proposed template for round-based
model checking, introduced in Section 8, to an SMT encoding, which can be
verified using a SAT-solver. This translation methodology can be automated
through a compiler. We show such methodology using the example introduced
in Figure 3: the wait-free n-process consensus protocol (Herlihy, 1991), formal-
ized in Promela.

For the sake of readability, Figure 10 shows the translation of the Promela
model in Python, using the Z3 bindings (de Moura and Bjørner, 2008). We also
support the generation of SMT-LIB2, a common language for SMT solvers.

The key to generating an SMT problem equivalent to the Promela model
lies in modeling variables (state) and instructions (state transitions). Variables
that are write-only (like v) are converted into an array of symbolic bytes, one
for each process. Variables that are set from a select constructs have each local
symbolic variable limited by their bounds (line 15 limits the possible values
of v). This technique is popular in parallelizing compilers (Bondhugula et al.,
2008), with the polyhedral model being the most precise (Singh et al., 2017).

Variables that change value during the execution of each process are trans-
lated to a matrix of N∗T symbolic bytes. N stands for the number of processes,
representing the local state, and T (or max_time) represents the maximum time
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Fig. 10 Wait-free consensus n-process consensus protocol, encoded in Z3.

1 n = 3
2 instructions = 3
3 max_time = instructions * n
4

5 s = Solver ()
6

7 r = byte("r")
8 ghost = byte("ghost")
9

10 vs = constant_local_byte("v", n)
11 decisions = p_byte("decision", n)
12 firsts = p_byte("first", n)
13

14 # select( v : 1 .. n)
15 restrict_all(s, vs, lambda v: And(v>0, v<=n))
16 restrict_all(s, decisions , lambda d: And(d>0, d<=n))
17 restrict_all(s, firsts , lambda f: And(f>0, f<=n))
18

19 # Body
20 proc = bitvect_in_time("proc", max_time)
21 ins = bitvect_in_time("proc", max_time)
22

23 restrict_all(s, proc_domain , lambda p: And(p >= 0, p < n))
24 restrict_all(s, ins_domain , lambda p: And(i >= 0, i < instructions ))
25

26 for i in range(max_time ):
27 for j in range(i):
28 restrict(s, Implies(proc[i] == proc[j], ins[i] > ins[j]))
29

30 for t, cp, ci in zip(range(max_time), proc , ins):
31 """ Instruction #0: Compare and Swap """
32 for p, v, first in zip(range(n), vs, firsts[t]):
33 # If(old r == 0, r = vs , r = old r)
34 restrict(s, If(And(cp == p, ci == 0, r[t] == 0),
35 r[t+1] == v,
36 r[t+1] == r[t] ))
37 # new first = old r
38 restrict(s, If(And(cp == p, ci == 0),
39 firsts[t+1][p] == r[t],
40 firsts[t+1][p] == first ))
41 """ Instruction #1: Decision depends on first and input/vs """
42 for p, decision , first , v in zip(range(n), decisions[t], firsts[t], vs):
43 restrict(s, If(And(p == cp, ci == 1),
44 decisions[t+1][p] == If(first == 0, v, first),
45 decisions[t+1][p] == decision ))
46 """ Instruction #2: Ghost can have previous value , or decision value """
47 for p, decision in enumerate(decisions[t]):
48 restrict(s, If(And(p == cp, ci == 2),
49 ghost[t+1] == decision ,
50 ghost[t+1] == ghost[t]))
51 # assertions
52 restrict_not(s, decisions[max_time], lambda d: ghost[max_time] == d ))
53 sat_result = s.check()

instant, obtained from the serialization of global instructions in each process.
As an example, the decision variable is converted into a matrix of 3 by 9 bytes
(line 11).

Variables that are shared across processes do not require duplication per-
process nor per-instant and are represented as a single byte (like r or ghost).

Encoding the execution of programs corresponds to defining the relation-
ship between matrices of mutable variables (like decision). Lines 31-50 encode,
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Table 5 Execution time and total memory comparison of Explicit versus Symbolic Model
Checking for Herlihy’s wait-free consensus protocol, with and without Partition Symmetry
Reduction.

Spin with PSR Spin without PSR Z3 with PSR Z3 without PSR
n Memory Time (s) Memory Time (s) Memory Time (s) Memory Time (s)
2 129 MB ∼0 129 MB ∼0 15 MB ∼0 15 MB ∼ 0
3 129 MB ∼0 129 MB ∼0 20 MB ∼0 20 MB ∼ 0
4 129 MB ∼0 147 MB ∼0 59 MB 13±5 59 MB 13±5
5 132 MB ∼0 1.4 GB 78 829 MB 1187±173 829 MB 1244±309
6 158 MB 1 — — — — — —
7 373 MB 12 — — — — — —
8 2.5 GB 119 — — — — — —
9 16.3 GB 493 — — — — — —

using the If SMT primitive, the execution flow in each process. Notice that
atomic blocks correspond to a single restriction (Instruction #0 is one exam-
ple). If a variable v has its value increased by one, the corresponding translation
would be v[t+1] = v[t] + 1.

The final step is to translate the assertions from Promela to restrictions in
SMT. Because we are trying to find if there are values that violate this asser-
tions, we negate the assertion within the SMT. The SMT solver guarantees
that there are no values that break the assertion, or gives one such example.

Partition symmetry and message order reductions can be applied in SMT
encodings. As an example, we apply partition symmetry reduction to the SMT
encoding of this problem by generating all the possible partitions, and restrict-
ing the values of variables in the different processes to be equal or different,
according to the current partition. All possible partitions are then combined
using disjunction and added to the current problem.

Table 5 shows the comparison of Spin vs Z3 on execution time and total
memory, unlike in the previous evaluation where we reported the memory used
to represent the states. Because Z3 does not have a comparable measure, we
report total memory consumption of the process. Because SMT-solving using
Z3 is non-deterministic (in the order of strategies applied, not on the result),
we executed each instance of the problem 30 times and report the mean and
standard deviation. For this experiment, we used a 2.93GHz Intel Xeon X5670
with 24GB of 1066MHz RAM, using Spin 6.5.0 and Z3 4.4.1.

One important conclusion to take is that SMT-solvers have a much more
unpredictable behavior than exhaustive model checking. Executing Spin sev-
eral times yields the same number of states and same peak-memory, with
little deviations on execution time. SMT-solvers, on the other hand, can be
much faster or slower, depending on the initial random seed. Performance
predictability is a preferred factor in developer tools.

Another conclusion can be taken from comparing Spin vs Z3 without the
reduction on n = 4. Spin is significantly faster than the SMT solver, but
requires almost double the memory. This might indicate that Z3 might be
a viable choice in memory-constrained scenarios where time is a non-critical
factor.
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Partition Symmetry Reduction in SMT approaches does not significantly
improve performance, especially when compared to the high variability of exe-
cution time. The actual benefits depend on the problem at hand and can have
more impact when the search-strategy of the SMT-solver is fixed, instead of
randomly selected. It is also important to notice that Partition Symmetry
Reduction allows the Spin model checker to evaluate an higher number of
processes, compared to both exhaustive and symbolic searches.

10 Conclusion

Model checking and other formal techniques have proven extremely useful
for verifying distributed algorithms. However, these techniques have two key
challenges. In many cases the verification process is computationally intensive
and is affected by the state-space explosion problem. Furthermore, there is
great manual effort in formalizing the smallest sufficient model to verify the
correctness of a given system.

To mitigate the state-space explosion problem, we propose two reduc-
tion techniques that avoid expanding equivalent states by exploiting symme-
tries in computations. Partition symmetry reduction deals with initial non-
deterministic values selected by processes and reduces the possible permuta-
tions to the possible partitions of processes, thereby assigning a partition to
each process instead of an explicit initial value. This reduction is valid for algo-
rithms in which the set of initial values is unordered. The theoretical reduction
achieved is significant and is substantiated by the practical results obtained
using Spin.

Message order reduction deals with the possible interleaving of message
transmissions in distributed systems. Distributed algorithms that work in
communication-closed rounds apply a state-transition function, at the end of
each round, that consists of operations that are commutative. As such, regard-
less of the order in which incoming messages are read, the local state at the
end of a round is the same, exclusively determined by the failures. Therefore,
the proposed reduction only examines one permutation of message transmis-
sions. The reduction achieved by this technique is significant and the practical
results obtained with Spin are close to the theoretical values.

The two proposed reductions are limited with respect to the algorithms
in which validity is guaranteed. This also occurs with many other reduction
techniques and, notably, it is the case of the well known partial order reduction.
We advocate using the principle of design for verification, i.e., given that it
is reasonably practical to design protocols that fulfill the restrictions of the
reductions, one may guarantee at design time that a protocol allows the two
reductions to be applied. Namely, the protocol should be based upon unordered
sets of values and the state-transition function should consist of commutative
operations. This would allow both proposed reductions to be applied and result
in a significantly smaller state space by orders of magnitude.
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To deal with the challenge of formalizing distributed algorithms while aim-
ing for a small but sufficient model, this paper provides a verification tem-
plate written for the Spin model checker. The template provides designers
with a reusable model that implements round-based communication among
distributed processes. A designer of a new algorithm only specifies the lo-
cal state-transition function and the message-computation function for each
round. The remainder of the model can be reused. This verification framework
includes also the implementation of the proposed reduction techniques, facili-
tating the formal verification of distributed algorithms. While this framework
targets the Promela language, the proposed methods are general and can be
applied to other model checking techniques, such as SMT-backed symbolic
model checkers.
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