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Abstract—Proteins are indispensable to the living organisms
and are the backbone of almost all the cellular processes.
However, these macromolecules rarely act alone, forming the
protein-protein interactions. Given their biological significance
it should come as no surprise that their deregulation is one of
the main causes to several disease states.

The sudden surge of interest in this field of study motivated
the development of innovative in silico methods. Despite the
obvious advances in recent years, the effectiveness of these
computational methods remains questionable. There is still
not enough evidence to support the use of just in silico
techniques to predict protein-protein interactions not yet ex-
perimentally determined. It is proved that one of the primary
reasons leading to this situation is the non-existence of a
”gold-standard” negative interactions dataset. Contrary to the
high abundance of publicly available positive interactions, the
negative examples are often artificially generated, culminating
in biased samples.

In this paper a new unbiased dataset is presented, that does
not overly constraint the negative interactions distribution.
Beyond the novel dataset, also distinct deep learning models are
proposed as a tool to predict whether two individual proteins
are capable of interacting with each other, using exclusively
the complete raw amino acid sequences. The obtained results
firmly indicate that the proposed models are actually a valuable
tool to predict protein-protein interactions, mainly when com-
pared with the existing approaches, while also highlighting that
there is still some room for improvement when implemented
in unbiased datasets.

1. Introduction

Proteins play vital roles in diverse biological processes,
but rarely act as individuals, producing elaborate complexes
with other proteins to perform the function they were de-
signed to. The existent established laboratory techniques that
predict Protein-Protein Interaction (PPI)s are not efficient,
as they are too time and cost consuming. This situation
propelled the development of robust and efficient in silico
prediction methods.

Recently, the increasing amount of available data and
computational power paved the way to the implemention
of Deep Learning (DL) techniques to predict PPIs [1].
However, despite all the existing prediction techniques, the
performance of a model is also heavily dependent on the
quality of the PPIs datasets incorporated.

2. Data

2.1. PPIs datasets

Due to the lack of datasets of negative interactions,
these are generally computationally generated. Most of the
existing datasets incorporate a non co-localization technique,
which conceives as a negative interaction a random protein
pair whose individual proteins are associated with distinct
cellular localization annotations. Nevertheless, this approach
can lead to over-optimistic estimates of the accuracy [2].

2.1.1. Unbiased dataset. To limit the number of possi-
ble false positives only the human multi-validated physical
PPIs available in BioGRID [3] were selected. The negative
random sampling method was implemented with a slight
variation from the original work [4]. The approach consisted
on randomly sampling two distinct proteins from the unique
proteins of the multi-validated positive interactions. Finally,
the pair sampled was compared with the multi-validated
and not multi-validated positive interactions and if it was
not already labeled as one of them, then it was considered
a new negative interaction. This simple twist yielded a
small contamination of the negative set, if even existent, as
protein pairs with the slight evidence of potentially being
considered positives interactions were taken into account
and not constituted a negative interaction.

2.1.2. Pan et al. dataset. It is a dataset exclusively com-
posed by human PPIs. Afterwards the negative interactions
were computationally generated by the non co-localization
method.

2.1.3. Du et al. dataset. It is a Saccharomyces cerevisiae
PPIs dataset, in which the negative interactions were also
generated with the non co-localization method.



TABLE 1: Results of the best models

Convolution Neural Network (CNN) Model Fully Convolutinal Neural Network (FCNN) Model
Unbiased Pan et al. Du et al. dataset Unbiased Pan et al. Du et al. dataset
dataset dataset dataset dataset dataset dataset

Accuracy 62.5% 98.2% 90.3% 60.7% 98.8% 90.8%
Sensitivity 64.5% 97.6% 89.0% 67.3% 98.7% 89.5%
Specificity 60.4% 98.8% 91.7% 53.9% 98.9% 92.2%
F1-Score 63.3% 98.1% 90.2% 63.2% 98.7% 90.6%

3. Model Architectures

In this paper 2 unique model architectures were ex-
plored: CNN and FCNN, which were incorporated with a
common architectural aspect between them, the multiple in-
put architecture that processes the proteins of an interaction
as separate entities. This approach has seen some use in
various works [1] and has been regarded as the one that
promotes better performances.

A DL model expects a fixed size input, regardless of
the varying lengths of the protein sequences. In this regard,
we defined a common length for the protein vectors, the
value obtained by the 90 percentile of the distribution of
the proteins length of the main datasets [6]. Any protein
longer than the determined value was removed from the
dataset, and the remaining ones were zero padded to the
determined value and were also encoded using one-hot
encoding technique.

3.1. CNN

This architecture is composed by an initial block of
3 convolutional layers. The output is then submitted to a
flatten layer. From each protein results a vector and these
two vectors are then merged into a single one, specific to
each interaction, and posteriorly fed to the final block of 3
fully connected layers to learn a function that is capable of
distinguish between interacting and non-interacting pairs.

3.2. FCNN

Notwithstanding the significance of the work conducted
by Springenberg et al. [7], the architecture incorporated in
this paper does not fully match the one used in the original
study. Our model is composed solely by convolutional layers
that replace the non-convolutional layers of the CNN. The
pooling layers of the CNN perform fixed operations on the
feature maps with the intention of subsampling them, but
this is also easily achievable just by using convolutional lay-
ers with no padding and a higher stride, as it was concluded
in the original work [7]. Applying convolutional layers to
flatten the input is not as destructive as using a flatten layer,
because during the convolutional process the model attempts
to create a representation that incorporates all the spatial and
structural information and compresses all the knowledge of
the feature maps on a single neuron, rather than simply
linearly flattening the input. Finally the fully connected
were also replaced, as their main difference lies on the
connectivity of the neurons between layers. Consequently,

using a convolutional layer with filters with dimensions that
match the dimesions of the output of the previous layers is
in essence the same as using fully connected layers.

4. Results and Discussion

4.1. Results

From each of the datasets we produced two models, one
for each of the two neural networks architectures consid-
ered, which totalizes six different models established and
optimized with a grid search technique. It was considered
as the best model the one that achieved the highest result on
the validation set, which corresponds to 20% of the training
set. The results are displayed in Table 1.

4.2. Discussion

Even though benchmark datasets were used as the start-
ing point, the subsequent elimination of some interactions,
attributable to the padding constraints, results in the cre-
ation of slightly smaller datasets. Nevertheless, the PPIs
representation and distribution of each dataset is similar
to its respective benchmark dataset, as the larger part of
the dataset remains the same. Just by itself this simple
fact does not completely invalidate the comparison of the
proposed models with the state of the art techniques built
upon the respective benchmark datasets. It simply hinders
the comparison task, as is is not possible to clearly claim
that the models proposed in this work surpass the already
established ones, it is only justifiable to assess whether
their performances are at a similar level or not, which just
corroborates the reliability of the models and validates their
predictive potential.

TABLE 2: Accuracy results of some state of the art models
built upon one of the benchmark datasets

Pan et al. dataset Du et al. dataset
Gui et al. [8] 98.1% -

Wang et al. [9] 97.1% -
Sun et al. [2] 98.1% -
Pan et al. [5] 97.9% -

Wang et al. [10] 97.8% -
Zhang et al. [11] - 95.2%

Du et al. [1] - 92.5%
You et al. [12] - 89.2%

Zhou et al. [13] - 88.8%
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Figure 1: Distribution of the interactions in each of the PPIs domain of the three evaluated datasets. (a) unbiased dataset,
(b) Pan et al. dataset, (c) Du et al. dataset. Proteins are represented by the grey nodes, the positive interactions by the black
edges and the negative interactions by the red edges.

4.2.1. Comparison with existing techniques. The meticu-
lous analysis of the Table 2 and Table 1 recognizes that the
individual models established in this work are on par with
the state of the art algorithms, as both techniques achieve
high results in the benchmark datasets. It is clear that in
some cases the CNN and FCNN models even surpass the
state of the art alternatives, but again, those differences may
be a consequence of the small variances of the datasets,
and not from a performance standpoint. With the results
obtained it is only fair to declare that the models are in fact
valid alternatives. These findings also dispute several studies
that solely rely on protein descriptors to obtain valid protein
representations.

The results approve the FCNN architecture as it yields,
for the most part, better performances than the CNN. After
all, the homogeneous take on the architectures is at least
intriguing and deserves further examination.

4.2.2. Impact of the main datasets. Despite the overall
excellent results on the benchmark datasets, the same is
not verified in the models trained on the unbiased dataset.
The models are fundamentally the same, so, the inconsis-
tency has to come from the datasets and the way they are
built. The obervation of Figure 1 easily illustrates that
the benchmark PPIs datasets are in fact biased. Obviously,
when the number of positive interactions is the same as
the negative interactions, the negative interactions should
present a distribution at least as sparse as the distribution
of the positive interactions. Figure 1 does not illustrate
such scenario across all datasets. The unmissable biased
distribution of the negative interactions is the main cause of
the discrepancy between the results of the proposed models,
as the more restrained the negative interactions are, the
better the results.

A more rigourous examination of the interactions was
implemented, for which the degree distribution was in-
tegrated. In a protein-protein network the degree can be
interpreted as the number of possible interactions a specific
protein has. From observing Figure 2 we clearly identify
that in the unbiased dataset both the positive and the negative

interactions present a similar degree distribution, which
legitimizes their equivalent distributions of the interactions.
On the other hand, in the benchmark datasets, there is a
clear difference between the distributions, since the negative
interactions severely deviate from the power law curve.

5. Conclusion

In this paper an unbiased independent dataset and two
innovative DL architectures were established. At the same
time, the reliability of the innovative FCNN architecture was
authenticated, which motivates its growth into a standard
architecture, not disregarding the need for further investiga-
tion.

On the other hand, we also concluded that the dataset is
a valuable element of a DL experiment, as the data strongly
influences the performance. A model is only as good as the
insights it can extract from the dataset fed to it, in the end
the final word will come from the quality of the dataset.
The exclusive analyze of the results of several published
papers can incorrectly lead us to believe that the large-
scale PPIs prediction problem is well addressed and close
to be considered a solved problem. However, with the work
developed in this paper, the viability of several state of the
art PPI prediction algorithms built upon biased datasets is
questioned.
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