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ABSTRACT

The next-generation of Industrial Automation and Control Systems (IACS) and Supervisory Control
and Data Acquisition (SCADA) systems pose numerous challenges in terms of cybersecurity moni-
toring. We have been witnessing the convergence of OT/IT networks, combined with massively dis-
tributed metering and control scenarios such as smart grids. Larger and geographically widespread
attack surfaces, and inherently more data to analyse, will become the norm.

Despite several advances in recent years, domain-specific security tools have been facing the chal-
lenges of trying to catch up with all the existing security flaws from the past, while also accounting for
the specific needs of the next-generation of IACS. Moreover, the aggregation of multiple techniques
and sources of information into a comprehensive approach has not been explored in depth. Such a
holistic perspective is paramount since it enables a global and enhanced analysis enabled by the usage,
combination and aggregation of the outputs from multiple sources and techniques.

This paper starts by providing a review of the more recent anomaly detection techniques for
SCADA systems, focused on both theoretical machine learning approaches and complete frameworks.
Afterwards, it proposes a complete framework for an Intrusion and Anomaly Detection System (IADS)
composed of specific detection probes, an event processing layer and a core anomaly detection compo-
nent, amongst others. Finally, the paper presents an evaluation of the framework within a large-scale
hybrid testbed, and a comparison of different anomaly detection scenarios based on various machine

learning techniques.

1. Introduction

The latest generation of Industrial Automation and Con-
trol Systems (IACS), combining Industrial IoT (IIoT) and
Supervisory Control and Data Acquisition (SCADA) envi-
ronments, poses several challenges. According to a survey of
two hundred automation executives in 2015 [63], the adop-
tion of IIoT, primarily driven by the optimization of opera-
tional efficiency and productivity, faces cybersecurity as the
biggest challenge. Similarly, in another study [60] more than
two hundred industrial companies refer cybersecurity as a
high priority. The importance of security across several In-
dustry 4.0 enablers, including but not limited to Big Data,
Artificial Intelligence and Open-Source Software, is also re-
ferred in another survey [4].

The attack surface of IACS has grown significantly over
the past years. Major incidents, from Stuxnet [55] to Indus-
troyer [21], keep showing their vulnerabilities, including the
lack of security of SCADA communication protocols as one
of the most criticized issues. Whereas this scenario is now
changing, with several SCADA protocols being redesigned,
it remains a problem, as legacy protocols are still widely
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used.

Using an energy smart grid as a reference scenario, this
paper describes an Intrusion and Anomaly Detection System
(IADS) specifically designed to tackle the architectural and
security challenges of the next-generation of IACS. Namely,
this paper presents a comprehensive strategy for monitoring
both industrial network traffic and managed physical pro-
cesses, as well as a way of integrating several heterogeneous
components into a unified detection framework capable of
monitoring the cybersecurity state of a SCADA system in
near real-time.

The contributions of this paper are threefold. First, we
provide an extensive literature review on SCADA anomaly
detection, focused on the last four years. Second, we de-
scribe a complete framework for performing Intrusion and
anomaly detection on IACS environments. Third, we present
an evaluation of the platform by showcasing several anomaly
detection scenarios based on supervised machine learning
classification.

The remainder of this document is structured as follows.
Section 2 provides a review of literature on the Intrusion
and Anomaly detection topic, including machine learning
approaches, event processing techniques and larger, integrated
frameworks. Section 3 describes the proposed IADS frame-
work. Section 4 presents several use cases for evaluating the
functionally and performance of the framework, and finally,
Section 5 concludes the paper and discusses future work.
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2. Related Work

There are several open challenges threatening SCADA-
based Industrial and Automation controls systems (IACS).

First of all, there are dozens of standards, guidelines and
best practices recommendations [40]. This creates a frag-
mentation issue and a challenge to implement them consis-
tently across the entire heterogeneous SCADA ecosystem,
from energy related systems (e.g. Smart Grids) to Manufac-
turing Execution Systems (MES).

The variety of different SCADA communication proto-
cols demands a huge effort, not just to somehow accommo-
date them all, but also to create solutions able to fit hybrid
environments (e.g. multiple SCADA communication proto-
cols in the same domain) and unified solutions that may be
reused across different domains. Moreover, most of these
protocols still lack fundamental security properties such as
confidentiality, integrity, authentication or authorization, leav-
ing room for simple scanning, eavesdropping, replay and
data injection attacks. In the last years, several security stud-
ies and tools exploring SCADA vulnerabilities were released
[78] [57], raising awareness, helping other researches and
pushing manufacturers to adopt more secure practices.

Moreover, as we move towards Industry 4.0, IACS be-
come more complex, distributed and data-centric, gradually
turning intrusion and anomaly detection into a Big Data prob-
lem. While this may be debatable, since there is no signif-
icant research to conclude how big is the data in such sce-
narios (or how big it needs to be in order to be considered
Big Data), using Big Data like approaches in IACS secu-
rity frameworks helps to cope with (1) volume - the amount
of information produced by all the interconnected devices;
(2) velocity - how to handle real-time information from the
physical processes; (3) and variety - how to handle all the
heterogeneous information (e.g. sensors data, network traf-
fic, logs).

Finally, the characteristics of IACSs differ from tradi-
tional IT environments [45]. TACS operators are known to
prioritize availability over security properties. They have
typically longer lifetime cycles and fewer updates - expos-
ing SCADA components to known vulnerabilities for longer
periods of time. The network communications are also typ-
ically more periodic (e.g. repeated polling of sensors data)
and have more strict latency requirements.

2.1. Intrusion and Anomaly Detection based on
Machine Learning

Intrusion and anomaly detection in IACS has been the fo-
cus of several research efforts over the last years. Two main
approaches can be found in the literature: signature-based
Network Intrusion Detection Systems focused on mainstream
SCADA communication protocols (e.g. Modbus, DNP3, CIP,
etc.) and anomaly detection based on machine learning al-
gorithms. Signature-based approaches are used to detect ab-
normal communications patterns based on known packet sig-
natures. They are often not aware of the physical process
and are likely to fail against unknown vulnerabilities. On the
other hand, anomaly detection based on supervised machine

learning models requires previous training and are usually
tuned for a single scenario, either for a specific process or for
a single communication protocol. Unsupervised approaches
are also available but are typically less accurate, which might
turn into a huge amount of false positives that overwhelm the
operator.

Multiple open-source NIDS, like Snort, Suricata or Bro,
have been the focus of several researches to improve their
support for numerous SCADA protocols, either by dedicated
preprocessors or specific rules [87] [85] [86] [58] [79]. Such
signature-based approaches represent an efficient and simple
solution for detecting and enforcing communication policies
at the network level.

In the remainder of this section, we present an overview
of the last four years of theoretical anomaly detection ap-
proaches targeting IACS, practical frameworks, and Security
information and event management (SIEM) systems.

Phillips et al. [73] presented four different anomaly de-
tection approaches — SVM, Decision trees, KNN, and k-means
— to classify SCADA network traffic, having obtained bet-
ter results with the supervised methods. Similarly to oth-
ers, their evaluation were based on a public dataset from a
gas pipeline [64]. Nevertheless, no details were provided
regarding the algorithms implementations nor how such ap-
proach could be deployed on real systems to detect attacks
on real-time.

McKinnon et al. [59] provided a comparison of three
algorithms — One-Class Support Vector Machine (OCVM),
Isolation Forests (IF) and Elliptical Envelope (EE) (EE) —
for wind turbine fault diagnosis, based on real historical tur-
bines data in Europe. They have obtained the best results
(82% of accuracy) with the first two methods. Nevertheless,
again, no details were provided regarding the algorithm im-
plementations or the used tools. Moreover, no dataset was
available to reproduce the results.

Gao et al. [37] presented an ensemble approach of Feed-
forward neural network (FNN) and Long short-term memory
(LSTM), having obtained better results to detect temporally
uncorrelated attacks with FNN and temporally correlated at-
tacks with LSTM. Among the list of features used, the au-
thors have chosen to include several Modbus-specific[62]
fields, thus limiting their approach to scenarios based on
this protocol. Moreover, the authors conducted their experi-
ments within a simulated SCADA environment and no datasets
are available.

Similarly to the previously described approach, in [88]
the features are extracted from network packets into a 25-
tuple for DNP3 [28] communications. The authors used a
Convolutional neural network (CNN) to classify different
types of network-based anomalies into several classes. This
has the advantage of not only reporting the anomalies but
also classifying them into more specific type of attacks. Even
though some of the classes were misclassified, they obtained
an overall accuracy of 99.38% and a low number of false pos-
itives related to the normal class. The authors assessed their
model against two different testbeds, but none of the datasets
is available.
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A comparison between Support Vector Machine (SVM)
and Random Forests against two datasets - Modbus and OPC
UA [71] communications respectively - is presented in [8].
The authors identified the most relevant features in the first
dataset as a combination of process specific values (e.g. pres-
sure) and packet related features (e.g. packet length). Ran-
dom forests consistently outperformed the SVM approach.
Similarly to most of the SCADA datasets, they started with
an unbalanced dataset (i.e. the number of normal values
is significantly superior to the anomalies) and a large per-
centage of missing values. To overcome this, the authors
used Principal Component Analysis (PCA) as a preprocess-
ing means for Random Forests and a zero mean scaling for
the SVM case.

The performance of two Recurrent Neural Network (RNN)
architectures (Gated Recurrent Unit (GRU) and LSTM) is
analysed in [81], arguing their benefits against predicting
unseen anomalies over the traditional supervised classifiers,
more suited to detect known anomalies. Similar to other re-
search works, the authors used a public gas pipeline dataset
[64] and a combination of packet and process features. While
the authors suggest there is room for improvement regard-
ing the obtained results, the accuracy around 90% for both
methods is smaller than other classification approaches. Al-
though more computing-intensive, they obtained slightly bet-
ter results as the number of epochs increases using LSTM,
suggesting it is more suitable than GRU for larger datasets
and unlimited computation resources.

Another study [74], follows a different approach, adopt-
ing an ensemble technique using a Quadratic Discriminant
Analysis (QDA) to combine two density-based estimation
algorithms (Local Outlier Factor (LOF) and Subspace out-
lier degree (SOD)). Such combination avoids the traditional
classification path and does not make an assumption about
the distribution of the data (as opposed to other paramet-
ric methods). Combining both methods, their approach was
able to cope with both local and global outlier detection,
leading to an overall good performance without penalty for
high dimensional data. Nevertheless, this is a computation-
ally expensive method and might not be as accurate as other
parametric approaches if the data distribution is known. The
authors run their model against the BATADAL dataset [83],
allowing to perform comparisons with publicly available re-
sults using the same data. The ensemble approach does not
always outperform their counterparts and, therefore, one can-
not conclude it would always be a better option. Neverthe-
less, it would be interesting to see how such a technique per-
form with other datasets and IACS domains.

In another study [51], the authors used a two-level ap-
proach by first applying a Blooming Filter and, afterwards,
a K-nearest neighbor (KNN) classifier for network anomaly
detection. Each packet needs to pass both algorithms to be
considered as normal. They used a public SCADA dataset

[64] referring to Modbus communications within a gas pipeline

facility. The authors handle the unbalanced dataset problem
by under-sampling using an AIIKNN algorithm. Moreover,
the authors also highlight the importance of a feature pre-

processing step, having used three different algorithms for
that purpose: PCA, Canonical Correlation Analysis (CCA),
and Independent Component Analysis (ICA). Nevertheless,
and despite their interesting 97% of accuracy, they obtained
significantly different results (from 68% to 100%) depend-
ing on the class of anomalies. Moreover, since they depart
from Modbus-related features, it would be interesting to un-
derstand how they perform on different protocols and feature
spaces.

Another interesting approach with 98% of accuracy com-
bined Online Sequential Extreme Learning Machine (OS-
ELM) with a set of Restricted Boltzmann machine (RBM)
to classify network flows into several classes of attacks [24].
It also used the public dataset of a Gas pipeline [64] but
does not specify whether the entire feature space is used or
not, only mentioning that the data is grouped into sliding
windows of 100 samples with overlapping of 400 instances.
OS-ELM is used as a first step to classify the flow as nor-
mal or in one of the known classes. Whenever an anomaly
is detected, it is forwarded to one of the RBMs. Then, each
RBM, trained for a single class of anomalies using a unary
classification method, is responsible for deciding whether
the anomaly matches its class or not. If there is no match it
will sequentially test the remaining RBMs. Such extra step
might be valuable to improve the correct class classification
since its RBMs can be highly specialized. Nevertheless, it is
important to acknowledge that the OS-ELMs are susceptible
to produce false negatives. In that case, the flow is marked as
normal and never reaches any of the RBMs. Moreover, this
approach depends on the previous knowledge of each class
and might not be suitable for unknown types of attacks.

A three-stacked LSTM approach to predict anomalies
in time series windows against different types of datasets,
including one power demand dataset, is proposed in [67].
Despite claiming 92% of precision, no details are provided
about the used features or the used datasets (which are not
publicly available).

An approach to predict cyber-attacks by analysing dif-
ferent combinations of CNNs is presented in [53]. It suc-
cessfully detected 32 out of 36 attacks in a public industrial
water treatment dataset [41], processing physical process pa-
rameters in time windows of 200 seconds. Nevertheless, us-
ing only physical process parameters means this approach
will not detect layer 2/3 attacks without direct impact on the
physical process (e.g. network scans).

Intrusion Weighted Particle based Cuckoo Search Op-
timization (IWP-CSP) and Hierarchical Neuron Neuron Ar-
chitecture based Neural Network (HNA-NN) are used to clas-
sify SCADA network data into nine different classes in [80].
The authors mention an experimental evaluation using a sim-
ulated environment, with 100 nodes and two process level
features (i.e. humidity and temperature). However, there is
no information on how such a small number of features are
related with their feature optimization layer, how they relate
with all the categories of attacks, or whether an additional
set of features were used but not referred.

The authors of [50] present an anomaly detection solu-
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tion capable of detecting attacks against managed physical
processes based on: 1) a first stage using a SVM model to
detect whether there is an anomaly and 2) and a second set
of SVMs specifically trained to classify the anomaly into a
known category. They evaluate their model against a Human
in the Loop (HITL) testbed, using a hybrid combination of
a simulated process (Tennessee Eastman chemical process)
and a real PLC (Wago 750-881). Time windows are used to
minimize data noise and to reduce the number of false pos-
itives. The model was able to detect the two injected pay-
loads. Nevertheless, it requires training and it will likely fail
to detect other categories of attacks that do not interfere with
process values.

Table 1 presents a summary of the surveyed literature.
Since each research work might contain multiple experiment
variants, the presented performance indicators refer to the
best results (scenarios) found for each work. Similarly, since
multiple distinct datasets are often used during the evalua-
tion step, the presented results prioritize SCADA-based vali-
dations. Additional surveys in the topic of SCADA-anomaly
detection, covering previous works, can be found in [26]
[66] [45]. Additional anomaly detection literature focused
on more general cybersecurity scenarios can be found in [29]
[42] [68] [84] [25] [S].

2.2. Security Information and Event Management
Systems for SCADA

Opposed to the previous section, that only addressed ma-
chine learning approaches, this section discusses related work
towards more complete frameworks that focus on, among
others: (1) collecting information from several sources in
real-time; (2) having the capability to preprocess and aggre-
gate those events; and (3) processing those events and decid-
ing whether they are anomalies or not.

A tri-modular platform to support existing cybersecurity
tools at Smart Grid Control Centers, composed of a data
module, a classification module and an action module, is
presented in [82]. This is an interesting approach that ex-
plores the advantages of having several types of data sources
and a data layer that implements several types of data pre-
processing and data ingestion. Nevertheless, the analytic
component is limited by a single classification approach (i.e.
LSTM), which might be not sufficient to cope with all types
of anomalies. Moreover, details about the internal parts of
the framework are not provided. This raises multiple ques-
tions, such as: How the outputs of several heterogeneous
sources are jointly processed? Which data format is used?
What feature space is used in the classification module?

Similarly, the authors of [52] proposed another interest-
ing framework for fault detection, targeting oil and gas in-
dustries. The authors proposed a lambda architecture based
on widely used open-source tools (i.e. Apache Kafka, Spark
and Cassandra). Nevertheless, few details about the imple-
mentation and obtained results are provided.

The authors of [89] focused on time-series analysis within
an Industrial field environment, presenting a Big Data frame-
work that encompasses several layers: acquisition, transmis-

sion, data processing and visualisation. All components were
based on widely used open-source tools such as MQTT, Apache
Kafka, Spark, InfluxDB and Grafana. A custom JSON-based
message format was used to seamless communication be-
tween the components. Despite the potential value of such a
platform, there are no implementation details or more prac-
tical evaluation results.

A SCADA honeypot environment together with a SIEM
system for cyber-attack profiling is presented in [56]. Al-
though the platform was not developed for detecting cyber-
attacks within a real SCADA environment, it provides some
related functionalities, such as log processing capabilities, a
real-time processing approach and a dedicated visualization
interface. A critical point for a good intrusion and anomaly
detection tool is to avoid replacing all the existing and spe-

cialized detection components such as NIDS by a global anomaly

detecting based on a given machine learning model. Instead,
it should be able to add knowledge on the top of the exist-
ing technologies. Similarly to others, the authors designed
the platform based on open-source software such as an Elas-
ticsearch stack [31] and Suricata [72]. Nevertheless, no de-
tails were provided about the used visualization techniques,
the evaluated processing algorithms or the adopted message
formats.

In [47], the authors explored the Suricata detection plu-
gin functionality to perform an additional packet inspection
to recreate a stateful analysis of the IEC 61850 [2] protocol
family. This is an interesting approach to complement single
packet signature matching, especially for complex protocols.

The desired features and challenges of a policy-based
SIEM are analysed in [38]. This is a different but impor-
tant approach, focused on the correlation of general busi-
ness policies rather than on physical process values or net-
work traffic. The authors describe the classical example of a
logon into a system event, detected after a leaving event. In-
dividually, each of the events could be regarded as normal,
but when considering their sequential order they reveal an
anomalous pattern.

A framework focused on EtherNet/IP and CIP [70] pro-
tocols is presented in [39]. The authors extended the func-
tionality of Bro, an open-source NIDS, and proposed a hi-
erarchical deployment of several instances (based on IEC
62443 SCADA reference architecture levels [3]). All the Bro
logs were aggregated using ElasticSearch and visualized us-
ing a dedicated web interface. While this approach can suc-
cessfully detect several types of attacks, few implementation
details were provided regarding the framework itself.

Table 2 presents a summary of the surveyed frameworks.
Most of them were designed to address a single specific prob-
lem or a single protocol. The ability to combine multiple
sources, techniques and protocols into a comprehensive frame-
work for supporting SCADA operators’ decisions seems to
remain a challenge.

2.3. Discussion
Before diving into a specific approach, it is important to
first understand the problem.
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Table 1
Summary of the latest literature contributions of SCADA Anomaly Detection Algorithms
Ref. Year  Focus Method Dataset Features Anomalies Indicators
[73] 2020 Gas Pipeline SVM, Decision Public Process and L7 Attacks
trees, KNN, and Dataset network related ACC=99.99
k-means
[59] 2020 Wind Turbine Systems  OCSVM, IF and Custom 19 Turbine Historical ACC=82
EE Dataset features turbine
faults
[37] 2019 Industrial Control FNN and LSTM Custom 19 Network Layer P=99.76
network data (Modbus Modbus Packet Features  2/3/7 R=99.57
related) Related attacks F1=99.68
[88] 2019 Industrial Control CNN 2 private 25 Packet Based  Layer
network data (DNP3 testbeds 2/3/7 ACC=99.38
related) attacks
[20] 2019 Industrial Control AMPSO-SVM-K-  N.A. 4 Network N.A. DR=95
network data means++ / packet related FA=0.02
GSA-AFSA-ELM Features
[8] 2019 Gas pipeline (Modbus ~ SVM and 2 Public Network packet  Layer
and OPC-UA related) Random Forests data sets and application 2/3/7 ACC=99.98
based attacks
[81] 2019 Gas Pipeline RNN (LSTM and  Public N.A. 35 P=0.92
GRU) Dataset application  R=0.92
level ACC=0.92
attacks
[15] 2019 Electric Power Systems CNN Simulated N.A. Power
IEEE-Bus related ACC=98.67
systems faults and
Data
injection
[74] 2019 Water distribution SOD / LOF / BATADAL N.A. Application  P=0.88
QDA Level R=0.94
Anomalies F=0.91
and Replay
attacks
[51] 2019 Gas Pipeline Bloom Filter and  Public 20 Network Layer 3/7 ACC=0.97
KNN Dataset Packet Features  Attacks P=0.98
R=0.92
F=0.95
[24] 2019 Gas Pipeline OS-ELM and Private 26 attributes Layer 3/7 P=0.99
RBM dataset attacks R=0.99
F=0.99
[53] 2018 Water treatment CNN and LSTM SWaT 51 attributes 36 P=1
system application  R=0.85
level F1=0.92
attacks
[67] 2018 Power Demand LSTM N.A. N.A. Power P=0.92
Demand R=0.14
faults F1=0.87
[46] 2017 Electric Power Systems SVM / ANN Transmis- 5 PMU Replay
sion & correlation Attacks ACC=98.47
Distribution ~ Features P=99.54
datasets F1=0.92
[80] 2017 Sensors Data HNA-NN 100 nodes 2 Features DoS and P=72
simulated in  (humidity and Spoofing R=100
NS-2 temperature) attacks ACC=95
[50] 2017 TE Chemical Process SVM Simulated 12 sensors Ladder Graphic
TE process measurements Logic only
Injection
Precision (P), Recall (R), F-Score (F), Accuracy (ACC), Not Available (N.A.)
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Table 2
Summary of the latest literature contributions of SIEM related Frameworks
Ref. Year  Focus Data Sources Data Format Messaging Analytics
[82] 2018 Smart Grid Logs and Sensor N.A. Kafka Spark, R and
data TensorFlow
[52] 2017 Oil and Gas Industry  Logs and Sensor N.A. Kafka Fault detection
data using ESPER and
Spark
[89] 2017 Industry 4.0 OPC / Network Custom JSON MQTT / Kafka  Storm
Data based
[56] 2016 SCADA network Public exposed Suricata alarms N.A. Profiling analysis
traffic SCADA Honeypot using ELK stack
[47] 2016  Smart Grid IEC 61850 Network  Suricata alarms N.A. IEC 61850 Stateful
Traffic protocol analysis
based on Suricata
Plugins
[38] 2016 Policy Monitoring Security Control Custom Structured N.A Log Correlation
Logs Logs messages
[39] 2016 Water Treatment CIP/EthernetIP Bro alarms N.A. Log aggregation

traffic

from multiple
domains with ELK

The topic of SCADA security is a large umbrella for dif-
ferent specific problems. The majority of the reviewed pa-
pers focused on detecting anomalies such as network-based
cyber-attacks or physical faults by looking either at physi-
cal process properties, network SCADA communications or
a combination of both. Other potentially relevant features,
such as diversified log sources and host-based events are
commonly ignored, therefore missing an important oppor-
tunity to develop a more comprehensive approach covering
a broader spectrum of attacks. It is very unlikely that a sin-
gle approach would outperform all the others for all types of
anomalies. For instance, a model considering process fea-
tures only will simply fail to detect an important range of at-
tacks that do not have a direct impact on the process, such as
network scans or brute force login attempts. If we look at the
example of recent APT campaigns targeting IACS [48], they
typically start by collecting information from the environ-
ment over long periods of time - a latent stage during which
the threat may go undetected for months if one just looks at
physical process values. A NIDS (with support for SCADA
protocols) is still a valuable source for detecting such kind
of unauthorized communications - one of the most referred
SCADA security issues. Nevertheless, since a NIDS is lim-
ited to network traffic, it is clearly insufficient to address all
the security needs. This suggests that a better strategy is to
include more data sources.

On the other hand, the complexity of a SCADA envi-
ronment is one of the biggest challenges for anomaly detec-
tion based on machine learning approaches. The amount of
potentially different types of features can severely affect the
performance of the model and should be carefully selected.
Another frequently observed problem is a lack of datasets.
Given the cost and the complexity of recreating an industrial
control system, most surveyed works focused either on small
scenarios or in the few publicly available datasets. More-

over, some of them lack a diversity of anomalies, resulting in
imbalanced datasets that might lead to inaccurate or biased
classification issues. Intuition also suggests that a better ap-
proach is to take into consideration both supervised (more
apt at detecting known issues) and unsupervised (more suit-
able to detect unknown anomalies) techniques.

Similarly, by combining several different approaches, it
is possible to infer both local and global anomalies (e.g. a
single component fault on a given domain might not have im-
mediate effects on the overall process). Additionally, other
techniques such as stream processing (especially window-
ing) might help to reduce the number of false positives, since
the analysis is performed on the top of a group of events,
rather than a single event. Finally, as we are moving towards
a Big Data problem, to avoid scaling issues it is critical that
the chosen approaches can fit into scalable, distributed and
parallel computation environments.

3. Proposed IADS Framework

In this section, we discuss the design of an intrusion and
anomaly detection framework capable of coping with the
next generation of IloT-centric IACS systems, which are ex-
pected to be highly distributed and capillary (as it is the case
for smart grids, for example). This evolution is expected
to bring new security challenges, namely: larger attack sur-
faces, often coupled with insecure communications proto-
cols; likely insecure components in the long term, due to
long life-cycles; and increased complexity, both at the pro-
cess level and business levels. On the other hand, at the ar-
chitectural level, there are challenges such as the increasing
volumes of heterogeneous data, the event processing schemes,
the elasticity of the platform, the need for interoperability be-
tween components, the deployment approaches and the over-
all platform orchestration.
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The main idea behind our proposal is not to deploy a sin-
gle detection mechanism, but rather to have a flexible frame-
work and a holistic STEM capable of collecting valuable data
from multiple domains, efficiently processing that data, and
integrating multiple detection techniques that, combined, pro-
vide more knowledge about the security state of an infras-
tructure. The combination of different probes and third-party
components also has another interesting positive side effect:
it helps to cover a larger attack surface and makes it more
difficult for an attacker to bypass multiple detection mecha-
nisms.

The remaining of this section presents the building blocks
of the proposed IADS architecture (see Figure 1), including
a set of distributed probes that can be deployed on-demand to
meet different requirements, an elastic data streaming plat-
form that can easily adapt to different topologies, and a global
event processing framework that integrates multiple tech-
niques.
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Figure 1: Intrusion and Anomaly Detection System architec-
ture

A security monitoring solution for the next-generation
IACS must focus on the quality and the timing of the data.
More than ever, there is a multitude of event sources (e.g.
field data, network traffic, infrastructure health information)
that need to be monitored in near real-time. Our IADS was
designed as a data-driven security framework to fulfil those
requirements, combining different types of components (en-
compassing custom developed modules, as well as existing
open-source tools) with advanced event processing strate-
gies (e.g. stream processing and batch processing) that can
be used to efficiently collect and process different types of
data.

Another important thing to refer is that not all the TACS
environments and domains have the same requirements. There
is no magic number or metric to anticipate how much rele-
vant data needs to be collected and processed, for security

monitoring purposes. For instance, according to [32], even
a small country like Portugal has 6.5 million electricity me-
tering points. Whereas it is not expected that a single solu-
tion would be used to monitor them all, such number does
not account for all the other sources of information such as
security-related probes, network traffic or application logs.
So, depending on the measuring rate and the actual scenario,
we might expect from a few dozens of events per second (e.g.
small electricity substation) up to millions per second for a
large deployment. Therefore, the flexibility of the platform
and the potential to scale in/-out to accommodate different
deployments are also key requirements.

3.1. Cyber-physical probe and component
management

Cyber-physical probes are also an important part of the
platform. They are strategically deployed components, ei-
ther physical or virtual, used to continuously collect field
evidence, from raw telemetry data (e.g. physical process-
related information) up to complete reports of a malicious
activity incident.

Since the lack of security on SCADA communication
protocols is one of the most criticized topics of these envi-
ronments, we focused on understanding the existing SCADA
support for widely used open-source Network Intrusion De-
tection Systems (NIDS)s (i.e. Snort, Suricata and Zeek).
Although all of them have some SCADA support, there is
still plenty of room for improvement with additional proto-
col support, more rules and enhanced functionalities. We
contributed with multiple SCADA signatures for different
protocols [75] [27].

In the context of our architecture, it was also important
to understand how to integrate each probe output into a com-
mon data format. There is a lack of a universally accepted
format. Each tool tends to use its own custom format or in-
efficient formats such as IDMEF [33], a heavy format based
on XML which is not suitable for Big Data approaches. Nev-
ertheless, the event format is a key aspect, from both in-
teroperability and efficiency standpoints. A common for-
mat allows seamless integration of third-party components.
Whereas, choosing an efficient format have a direct impact
on the des-/serialization tasks, the network transmission and
the event processing algorithms. Taking this into account,
we designed a generic data-model for describing both inci-
dents and telemetry information [79], based on the Apache
Avro serialization system [9].

We also developed a common event adaptor and a generic
configuration agent for all the probes and components [79].
The event adaptor, based on a YAML configuration file and
a set of regular expressions, was responsible for mapping
different output formats and log sources (e.g. Syslog) into
a common event format (i.e. our data-model) and then for
pushing those events into upper layers.

The configuration agent, built on top of the MQTT pro-
tocol [7], provided a unified approach to manage different
components by abstracting their settings into a text-based
configuration and a set of common actions (read, write and
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exec). This allows to remotely and dynamically reconfigure
each component property through a common web interface.

Additionally, we explored SDN / NFV technologies to
implement the virtual probe concept, designed to leverage
the elastic nature of the platform. We also used a component
registry to support a virtual probe template library, allowing
for different types of instances to be deployed on-demand,
in a matter of seconds [35]. Finally, we developed physical
and SCADA specialized probes such as the Shadow Secu-
rity Unity (SSU) [23], as well as additional instrumentation
probes (refer to evaluation section for details) to further en-
hance the data collection stage.

3.2. Event stream processing
The event streaming platform plays a key role in the [ADS
architecture, fulfilling two purposes: (1) to provide an effi-

cient, distributed and decoupled mechanism for inter-component

communication with exactly-once processing guarantees; and
(2), to provide domain-level processing capabilities. The lat-
ter is particularly suited for taking advantage of edge com-
puting capabilities, enabling a distributed preprocessing stage
closer to the event source. For an anomaly detection plat-

form, this is useful for optimizing the entire processing pipeline,

enabling all sorts of event correlation techniques (from sim-
ple event filtering up to event enrichment and event aggre-
gation) at an earlier stage of the processing pipeline.

We used Apache Kafka [10] for implementing both the
messaging system the and domain processors. This enabled
a flexible and tight integration between both. This integra-
tion allows a unified approach to keep up with the new dis-
tributed boundaries of next-generation IACS, supporting both

small and large widespread deployments, as well as per-domain

edge computing capabilities.

Moreover, Kafka was designed to achieve high message
throughput without sacrificing latency — potentially support-
ing millions of messages per second. Additionally, Kafka
has multiple fault-tolerance and durability capabilities. A
message can be replicated across multiple Kafka topics, with
each topic possibly partitioned across several Kafka brokers.
This flexibility constitutes a key advantage for supporting
different message requirements within the same deployment
(e.g. high-severity messages vs low-priority telemetry data).

Another useful Kafka concept, opposed to pure queuing
mechanisms, is that the messages are not deleted after being
consumed. Instead, Kafka uses a sequential offset to iden-
tify each record within a partition and has the notion of con-
sumer groups. Moreover, a message can be load-balanced
across different consumer-members and multiple consumer
groups can consume the same message. For instance, at the
same time, we can have multiple instances cooperatively ag-
gregating the events, and we can also have an off-the-path
task to persist all of them (e.g. via Kafka Connect API to
the Data Lake).

The native support for stream processing is another ad-
vantage of Kafka. In the IADS, multiple domain processors,
built on top of the Kafka Streams API, can be dynamically
deployed, on-demand, to support different preprocessing re-

quirements (e.g. different message priorities) on a per (log-
ical and physical) domain basis.

Each domain processor is composed of a topology in-
cluding a source (the topics where the probes produce) and
a sink (the input topics of the SIEM layer). Additional inter-
mediate topics can also be used for supporting stateful oper-
ations (e.g aggregations), in contrast to stateless operations
(please refer to Kafka documentation [14] for such distinc-
tion).

Figure 2 illustrates an example of how we leverage Kafka
Streams DSL (Domain Specific Language) [14] to imple-
ment a feature aggregation task. Such tasks are the foun-
dation of the domain processor concept. In this example, we
implemented a domain processor to extract additional ag-
gregated features grouped by time windows on the top of a
stream of individual network packet features.

The initial KStream <K, V> is instantiated from one or
more input topics, where Vv refers to the IADS messages.
Next, we map all the messages to a common key across all
the messages, to perform a global aggregation. This is fol-

lowed by a further split of the aggregated stream (a KGroupedStream)

into a time windows feed (a TimeWindowedKStream). Addi-
tional aggregation scenarios are possible, using a different
K mapping in the previous step (e.g. using the uuid field in
the IADS datamodel for unique counts, the origin field for
further aggregation by message sources or the severity field
to distinguish between different message priorities). Simi-
larly, different time windows types are supported through the
Kafka Streams API (e.g. tumbling, hopping, sliding, etc.).

Then, each individual feature, encoded within the IADS
message using a list of meaning, content field pairs, is ex-
tracted into a new aggregated message. The output (the com-
putation result of the aggregation) is continuously stored on
a per-event basis. In our scenario (cf. Section 4 for more de-
tails) we use one-pass algorithms (e.g. Weldford’s algorithm
for computing the variance) to optimize the computation of
the aggregated features. Similarly to the original messages,
the aggregated messages contain the aggregated features en-
coded using a list of meaning and content field pairs.

Finally, the aggregation result is transformed back to a
plain KStream<kK, V> (containing the final aggregated stream
of messages) and ultimately pushed to the sink topic. It
should be noted that the Katka Streams API supports differ-
ent types of windows behaviours. For instance, each mes-
sage in the input topic might turn into an output message,
where each output message represents an intermediate result
of the aggregation (default behaviour). In our implementa-
tion, we use the suppress option to produce a single mes-
sage, containing the final aggregation, per each time win-
dows. Moreover, the time windows might by event-driven,
using the event time of each message, or triggered by the
wall-clock time using schedulers.

3.3. The SIEM Component

The SIEM component aggregates the event streams from
the multiple domains and, based on a set of machine-learning
algorithms, ultimately classifies an event as normal or anoma-
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Figure 2: Feature aggregation by time windows using Kafka
Streams DSL API

lous. We use Apache Spark [11] to reassemble a lambda
architecture in order to have a unified platform capable of
handling two types of data processing techniques: stream
processing (fast path) and batch processing (slow path).

Spark is a distributed data processing framework that
provides significant improvements over traditional map-reduce
alternatives, by using an in-memory approach and an effi-
cient Directed Acyclic Graph (DAG) scheduler. Similarly to
Apache Kafka, the distributed nature of Spark and the no-
tion of workers and executors provide an extremely elastic
approach where multiple computation nodes can work co-
operatively. Moreover, it already contains a set of APIs for
structured streaming, machine learning and dataframe ma-
nipulation. Factors such as the native Kafka integration (al-
lowing the usage of Kafka as a source and sink), the Avro
support and the availability of third-party machine learning
algorithms implementations were also useful. For the IADS,
this means it is possible to natively implement a set of com-
plete machine learning pipelines directly on top of the event
streams coming from multiple domains.

Figure 3 illustrates an example of an anomaly detection
task used to classify each message from a Kafka topic (with
the messages produced by the domain processors containing
a list of features) as normal or anomalous. It showcases the
integration between Kafka and Spark — and how the differ-
ent Spark APIs can be leveraged in the context of a SCADA
anomaly detection. The prediction step requires a classifier,
previous-trained based on the collected datasets (cf. Section
4 for more details).

A Kafka Source is configured to subscribe to multiple
domain level topics using the Spark Structured Streaming
API, which supports different types of input sources. Each
Kafka message (K v pair) coming from the domain proces-
sors is directly mapped into a Row of an unbounded Spark
Dataset<Row>. The Row contains a list of columns including,
amongst others, both K and v encoded as binary values, as
well as the topic and partition metadata.

Plain Avro messages can be directly decoded at this step

to primitive and complex Spark column types, based on the
Avro schema. For acommon Avro variant used by Confluent
Kafka Registry [1], where each message contains also the
schema management information, an extra conversion step
was necessary. Additionally, we also used a custom lookup
function for converting known feature pairs (based on mean-
ing / content field entries) and saving them as an additional
Vector column of the initial Dataset<Row>.

Then, by leveraging the Spark ML API, each feature vec-
tor goes through a pipeline, meaning a chain of transform-
ers (e.g. one-hot-encoding) and a estimator (the classifica-
tion algorithm). The classification result is also stored into
a label column. Finally, for each detected anomaly, a new
message is derived and pushed back to a Kafka topic using
a Kafka sink.

output topic |
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©t @
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Figure 3: Overview of a classification task using the different
Spark APls

3.4. Other Components

In this section we briefly address two relevant compo-
nents of the proposed IADS that, despite not being exten-
sively explored in this paper, distinguish our proposal, thus
deserving a mention.

One of these components is the leveraging of Software-
Defined Networking (SDN) and Network Function Virtu-
alization (NFV) technologies into the IADS. This allowed
having different types of containerized probes and services,
including virtual NIDS [35], by on-demand assigning them
monitoring ports or virtual data-diodes that are cost-efficient
alternatives to enforce unidirectional communications [36].
The SDN controller itself can also be used as an additional
source of information by providing soft real-time statistics
of network flows and virtual switch ports. The required re-
design of the SCADA network might create a barrier for the
SDN adoption, in some scenarios, but the numerous benefits
we observed [35] clearly pay off.

The other component, orthogonal to the event analysis
layer, is a Forensics and Compliance Auditing (FCA) sub-
system [43] [44](under revision) for persisting a broader spec-
trum of digital pieces of evidence obtained from additional
data sources such as Authentication, Authorization and Ac-
counting (AAA) sessions or physical access control systems.
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This module serves as an assisted mechanism for forensics
analysis tasks and policies conformity checks. The FCA
module uses the Elasticsearch stack (Elasticsearch, Logstash,
and Kibana) [31] as an efficient manual and semi-automatic

searching tool to cope with the complexity and massive amount

of available data.

4. Evaluation

This section describes several scenarios, the implemen-
tation and tools used for evaluating the proposed IADS —
with a special focus on the event processing and anomaly
detection layers.

First, we present the reference industrial testbed which
provided support for our experiments. Next, we describe the
evaluation use case that we used to assess the performance
of several supervised ML algorithms (using our platform).
Finally, we evaluate the event messaging layer, discussing
different configuration and service goals scenarios.

4.1. HEDva Testbed

The functional validation was conducted in the HEDva
testbed [34], a facility built by the Israel Electric Corporation
(IEC) to recreate the various domains of a smart grid, from
power generation up to power consumption. The testbed is
composed of a hybrid combination of real SCADA compo-
nents from multiple vendors with physical processes emu-
lated with high detail. This mix makes it possible to assess
the vulnerabilities of different SCADA protocols and equip-
ment without worrying about physical damages (as would
happen in a production environment).
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Figure 4: HEDva Testbed Overview

4.2. Reference Scenario — Data Exfiltration

A commonly observed scenario in cyberattacks is the es-
tablishment of side channels to the Command and Control
servers (C&C). These channels are used to remotely man-
age the compromised hosts as well as to exfiltrate sensitive

data. DNS tunnelling is one of the many known techniques
that allow recreating a two-way communication channel by
encoding data on both DNS queries (as part of the queried
domain name) and DNS responses (in the resource record
data). DNS is a fundamental network protocol for several
services and, therefore, it is often not blocked by firewalls,
leaving room for successful DNS-based exfiltration. Whereas
DNS is not a SCADA specific protocol, it is a candidate to be
used within SCADA systems to exfiltrate confidential data
such as PLC’s ladder logic, process data or operators cre-
dentials. Various machine learning approaches have been
proposed in the literature for detecting DNS-based exfiltra-
tion, mainly organized in two approaches: payload analysis
(based on packet header fields) and traffic analysis (based on
DNS session metrics) [90] [65] [69] [91].

Figure 5 illustrates the setup used to recreate a data ex-
filtration scenario using DNS tunnels. First, we configured a
server in the cloud to behave as an authoritative DNS server
for two previously registered domains. Then, we used two
popular DNS tunnelling tools (dnscat2 [16] and iodine [30])
to produce 23 scenarios variations, from simple tunnel hand-
shakes using different DNS record types to encrypted ses-
sions, interactive shells and the exfiltration of a complete
PLC project. On the IADS side, to showcase the different
anomaly detection capabilities, we developed a DNS probe
capable of extracting packet-specific features (as described
below) from the DNS network traffic. We also developed a
domain processor capable of extracting additional features
based on the aggregation of the messages into time win-
dows. Finally, a SIEM application was developed for train-
ing/classifying each message as normal or anomalous (i.e. a
possible attempt of DNS tunnelling).

Three datasets resulted from the experiments (cf. Table
3). Dataset DS/ contains over 15 thousand records (one per
each DNS packet), including all the anomalous and normal
DNS traffic related to software updates, network services
and arbitrary DNS requests. Dataset DS2 contains the ag-
gregated features - one record per each time-based window
- using hopping windows of 30 seconds and 5 seconds hops.
Dataset DS3 contains 25 features derived from DS, includ-
ing the average and the standard deviation for each feature
on DS1, as well as the number of packets per window.

Despite being originated from the same scenario, the three
datasets are fundamentally different and were used to feed
different anomaly detection approaches. There are trade-offs
between them. In DS1 we depart from a larger dataset where
each record, containing individual features of a single net-
work packet, can be processed in near real-time. This means
less computation on the preprocessing step but more at the
classification algorithm. In DS2, only aggregated events are
used to train the anomaly detection system, meaning more
computation at the domain processing but fewer events to
classify in the upper layers. Moreover, there is a distinction
between DS2 and DS3. In DS3 we use DNS-specific aggre-
gated features, whereas in DS2 we pursue a more generic
approach (that can be applied to other protocols — includ-
ing SCADA protocols) by using only generic network-level
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Table 3
Number of Records per class and dataset

No of Records
Class DS1 DS2* DS3*

Normal 8458 868 868
Anomaly 7410 276 276
Total 15868 1144 1144

*Original data before

oversampling using SMOTE technique.

features. Whereas the final accuracy in both cases is totally
dependent on the chosen features, a single packet might be
insufficient to represent a cyber-attack. On the other hand,
an aggregated record might be enough to flag a high network
pattern but might hide information behind all the underly-
ing aggregation statistics for low profile attacks. In DS3 we
use overlapping time windows to reduce the latency between
each new record, while maintaining larger aggregation win-
dows.
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Figure 5: DNS tunneling scenario
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Table 4
Features list by dataset
DS1 DS2 DS3
Frame Size Count Count
Query length Frame Size Mean of each
Mean feature of DS1
Query Shannon Frame Size Std of each
entropy Std feature of DS1
Query char Frame Size PIT Mean
percentage Var
Query non hex PIT Mean PIT Std
percentage
Query Alexa top IM  PIT Std
Reply length PIT Var
Reply Shannon
entropy
Reply char
percentage
Reply non hex
percentage

Reply Alexa top 1M

Packet Inter-arrival Time (PIT), Standard Deviation (Std),
Variance (Var)

For anomaly detection we used a machine learning ap-
proach where we evaluated the performance of nine super-
vised algorithms for binary classification (cf. Table 5). Each
record was labeled and marked as anomalous if either the re-
quest or response contains one the malicious domain names
— therefore, this feature was not considered for any algo-
rithm. The full list of used features, inline with previous
works, is enumerated in Table 4. Their feature histograms,
depicted in Figures 7, 8 and 9, show their pairwise distribu-
tion.

The features are mainly focused on: (1) the size of both
request and response packets — DNS tunnelling packets are
typically larger because they carry extra information; and (2)
how different the domain names are from normal DNS re-
quests — since they are used to encode data, they are typically
less natural than words used in normal DNS requests. Ad-
ditionally, we also include a binary feature to indicate if the

Luis Rosa et al.: Preprint submitted to Elsevier

Page 11 of 21



Intrusion and Anomaly Detection for the Next-Generation of Industrial Automation and Control Systems

0.012

0.04
0.008
0.004 0.02 N 1
0.000 0

400 800 1208'00 0

N

100 200 300 0 2 4 6
9 frame_size 12 req_length req_entropy
6 8 6
3 4 3
0 0 0

1.2 -0.8 0.0 08 0.0 05 1.0
0.12 req charpercent req_nonhexpercent req alexatoplM

1.6
0.08 10
0.04 08 5
0.00 0.0 \ _lh 0

100 200 300 0.0 2.5 5.0 00 04 08 1.2
rep_length 45 rep_entropy rep_charpercent
20
30
10 15
0 s 0 |
-0.8 0.0 0.8 00 04 08 12

rep_nonhexpercent rep_alexatoplM

Figure 7: Features Histogram for Dataset DS1

0.008
0.02 0.000030
0.01 0.004 0.000015
0.00 L flheunce 0,000

0 150 300 'ZIJ(r))CL%OOOOOO 50000000060000

count pkt_size_mean pkt_size_var
0.12
0.0030
0.0050 0.08
0.0025 m 0.04 0.0015
0.0000 0 200 400 0.00 0 200 400 -0000 0 6000 12000
pkt_size_std frame_time_delta_mean frame_time_delta_var
0.12
0.06
0.00 100

frameftlmefdeltaistd

Figure 8: Features Histogram for Dataset DS2

domain is listed in the Alexa top sites list [6], as an indicator
of whether this is a common DNS name. Other common fea-
tures, such as layer 2/3 fields or time-related measurements,
were explicitly not used. This means this approach is not
constrained to specific network details or limited to high-
throughout attacks. Opposed to other research works, we
decided to leave out the DNS record type. Although some
record types are preferred over others for data exfiltration,
using this feature for training purposes can result in ineffi-
cient models for classification of all DNS tunnel variants.
The dataset we collected contains a combination of several
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Figure 9: Features Histogram for Dataset DS3

tunnelling samples using different record types. We included
features extracted from both queries and replies. Although
there are some correlations between these features, since we
might have data encoded on both directions or only one way,
we opted for not performing any feature reduction, due to
the reduced number of items. Figures 10, 11 and 12 show
the heat maps of the Person correlation coefficients between
the features for each dataset, whereas Figures 13, 14 and 15
show the mutual information between each feature.
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Figure 10: Feature List Person Correlation for DS1

The application was developed on top of most recent
dataframe-based Spark ML API (instead of RDD). This al-
lows a more user-friendly approach, by introducing the no-
tion of pipelines, a set of transformers and estimators that
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Figure 12: Feature List Person Correlation for DS3

can be applied directly to a dataframe to reassemble a com-
plete workflow. For all the algorithms, we started from a
random 70/30 split where 70% of the dataset is used for train-
ing, validation and hyper-parameter tuning and the remain-
ing 30% was used for the final testing. Depending on the
specific algorithms (as detailed below), the first step of the
pipeline is the feature transformation (e.g. scaling, one-hot
encoding, etc.). The next step consisted of a 10 k-fold cross-
validation combined with a grid parameter search where the
best model of each algorithm was chosen to maximize the
area under the ROC curve (AUC). Finally, each model was
tested using the remaining 30% of the data.

We evaluated the performance of several tree-based ap-
proaches, including plain Decision Trees, Random Forests,
Gradient-boosted trees (GBT)s, XGBoost and LigthGBM.
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Figure 14: Feature Pairwise Mutual Information for DS2

They are known to produce acceptable results without re-
quiring a lot of feature engineering. Moreover, since the
implementations we use can already handle categorical fea-
tures, no feature transformation was applied for those ap-
proaches. For plain Decision Trees and Random Forests the
split was chosen to maximize the Information Gain (IG), ac-
cording to the equation 1, where D represents the dataset, s
a split, and N the size of the dataset. The Impurity in each
node was calculated using the Gini impurity equation [13].
Random forests, composed of several independent decision
trees built from a random subset of data and features, are
a popular choice that typically helps reducing variance and
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Figure 15: Feature Pairwise Mutual Information for DS3

over-fitting.

1G(D, s) = Impurity(D)
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GBTs, on the other hand, use a sequential process where
at each interaction they try to improve their result by incor-
porating the knowledge from the previous steps. We eval-
uated the native Spark implementation using a loss func-
tion according to the equation 2 [13]. Regarding XGBoost
and LightGBM, despite none of them being natively sup-
ported by Spark, both offer an easy integration path, using
Spark ML Dataframe pipelines. For XGBoost we used the
binary:logistic objective option [19], whereas for Light-
GBM we used the ghdt boosting setting [49].

N
2 ) log(1 + exp(=2y; F(x;))) ()

i=1

We also evaluated the native Spark Multilayer Percep-
tron classifier (MLPC), based on feedforward artificial neu-
ral [13] network. We assessed different network architec-
tures depending on the dataset. For DS1 we used 11, 7 and 2
as the number of nodes in the input, hidden and output lay-
ers, respectively. For DS2 we used 7, 5 and 2. Finally, for
DS3, we used 25, 14 and 2. The number of nodes within
the hidden layer was chosen based on the average of the
number of nodes in the input and output layers. The hid-
den layer uses the sigmoid activation function, whereas the
output layer uses the softmax function [13]. For the Naive
Bayes case, we used a feature scaler to transform the features
between 0 and 1.

Table 5

Summary of the key performance indicators for the DNS tun-
neling Detection using DS1

Technique Accuracy Precision Recall F1 AUC
Decision Tree 0.9914 0.9945 0.9872 0.9909 0.9912
Random Forests  0.9925 0.9982 0.9859 0.992 0.9921
GBT 0.9914 0.9945 0.9872 0.9909 0.9912
XGBoost 0.9989 1.0 0.9977 0.9989 0.9989
LightGBM 0.9989 0.9995 0.9982 0.9989 0.9989
Linear SVM 0.9776 0.9772 0.9754 0.9763 0.9775
MLPC 0.9895 0.9909 0.9868 0.9838 0.9893
NaiveBayes 0.9215 0.9115 0.9235 0.9174 0.9216
Logistic Regres- 0.9202 0.9061 0.9271 0.9165 0.9206
sion

Area under ROC (UAQ)

4.3. Performance Indicators

This section provides an overview of the performance in-
dicators of each method when applied to the different datasets,
according to the following equations, where TP, TN, FP and
FN stands for True Positives, True Negatives, False Positives
and False Negatives respectively:

Precision = __TrP 3)
TP+ FN
Recall = _Ire €]
TP+ FP
Accuracy = TP+TN )

TP+TN+FP+FN

_ 2% (Precision * Recall)

F1 (6)

Precision + Recall

Table 5 shows the results of the various assessed machine
learning algorithms for DS1. All the methods yield results
above 90% of accuracy. Whereas no algorithm outperforms
the remaining in all the measured indicators, Gradient Boost-
ing trees, namely XGboost and LightGBM, provided the best
results.

Table 6 shows the results of the various machine learn-
ing algorithms for DS2. Asexpected, the overall results were
lower when compared to DS1. This can be explained due to
the reduced number of features and records of DS2. This
is a trade-off between a less accurate but faster and more
generic model. Since we didn’t use any Application layer-
related features, this approach remains valid for detecting
large deviations in the traffic patterns. Nevertheless, several
methods surpass the 90% accuracy level. Tree-based meth-
ods obtained, once again, more consistent values with some
advantage for the Random Forests approach, in this experi-
ment. The large amounts of subsequent packets, when com-
pared with a low traffic scenario as this case, can be easily
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Table 6
Summary of the key performance indicators for the DNS tun-
neling Detection using DS2

Technique Accuracy Precision Recall F1 AUC

Decision Tree 0.8955 0.8776 0.5811 0.6992 0.7798
Random Forests  0.9237 0.8615 0.7568 0.8058 0.8623
GBT 0.9068 0.7887 0.7568 0.7724 0.8516
XGBoost 0.9124 0.8525 0.7027 0.7704 0.8353
LightGBM 0.8983 0.8276 0.6486 0.7273 0.8065
Linear SVM 0.8927 0.95 0.5135 0.6667 0.7532
MLPC 0.8909 0.8909 0.6203 0.7313 0.7982
Naive Bayes 0.8079 1.0 0.0811 0.15 0.5405
Logistic Regres- 0.8898 0.8302 0.5946 0.6929 0.7812

sion
Area under ROC (UAC)

Table 7
Summary of the key performance indicators for the DNS tun-
neling Detection using DS3

Technique Accuracy Precision Recall F1 AUC

Decision Tree 0.9753 0.981 0.9699 0.9754 0.9753
Random Forests 0.9867 0.9887 0.985 0.9868 0.9867
GBT 0.981 0.9848 0.9774 0.9811 0.981

XGBoost 0.9886 0.9924 0.985 0.9887 0.9886
LightGBM 0.9734 0.9737 0.9737 0.9737 0.9734
Linear SVM 0.981 0.9923  0.9699 0.981 0.9811
MLPC 0.9867 0.9924 0.9812 0.9868 0.9868
Naive Bayes 0.9411 0.9916 0.891 0.9386 0.9416
Logistic Regres-  0.981 0.9812 0.9812 0.9812 0.981

sion
Area under ROC (UAC)

spotted. For larger networks, this might not be so accurate
or might require additional fine-tuning of the time windows.

Table 7 shows the results of the various machine learn-
ing algorithms for DS3. By using a large number of fea-
tures, including DNS-specific ones, there was an improve-
ment when compared with DS2 results. As before, tree-
based approaches produced the more interesting results, with

aslight overall advantage for XGBoost with an AUC of 0.986.

As with DS1, it is also remarkable that all the algorithms ob-
tained an AUC score above 0.9.

Figure 16 shows the average impact of each feature on
the XGboost model using the DS3 dataset. As expected, the
presence of the DNS name in the Alexa top sites list was
among the most significant features. DNS exfiltration at-
tacks mostly use dedicated DNS records that are unlikely
to appear in lists of popular domains. Similarly, the aver-
age length of DNS responses also played a significant role
in the classification. This depends on the underlying net-
work traffic, since high-throughput networks might benefit
the attacker by smoothing such values.

The training times are another important indicator to un-
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Figure 16: SHAP Summary plot for XGBoost Model using
DS3 dataset

derstand how the different algorithms perform within the
distributed computation platform. Such times are mainly
influenced by: the number of records; the algorithm itself;
its parameters; the capacity of distributing the workload and
running tasks in parallel; the computational resource avail-
ability (e.g. CPU, GPU, FPGA); and the Spark cluster de-
ployment setup (e.g. number of Spark workers, number of
executors, number of cores per executor).

Table 8 represents the wall-clock time spent to train 70%
of the original dataset (the training data) without any grid
parameter search. These experiments were conducted us-
ing a 3-worker Spark cluster, each one running on a differ-
ent virtual machine with 8 cores and 16GB RAM each, on a
Dell PowerEdge R440 host with an Intel(R) Xeon(R) Gold
5120 CPU (28 vCPUs), 256GB RAM and 3.2TB datastore
(4x 10K RPM SAS HDD in RAID6 via PERC H740P con-
troller), running an ESXi 6.7 hypervisor instance. For ex-
perimental purposes, the Spark deployment ran on the top
of a Docker container based on official NVIDIA/CUDA im-
ages with GPU passthrough. This allowed keeping the re-
sults consistent across all the tests, including a GPU-based
approach comparison.

Given its greater number of records, overall training times
for DS1 were slower than for DS2 and DS3. Such differ-
ences are expected to increase even more with larger datasets
and might become a decision factor when choosing the right
algorithm. For the same number of records, DS2 was, in
general, faster than DS3, since we used a significantly less
number of features (25 for DS3 versus 7 for DS2). Naive
Bayes and Logistic regression were among the fastest meth-
ods, but also the most inaccurate. Linear SVM was signifi-
cantly slower without any meaningful advantage when com-
pared to tree-based approaches. On the other hand, Light-
GBM obtained a good balance between the training times
and the actual classification results.

In an additional experiment, we compared the impact of
available computational resources on the training time for
larger datasets (using synthetic data generated from DS1).
Figure 17 shows the XGBoost training times against differ-
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Table 8

Summary of the training times(s)
Technique DS1 DS2 DS3
Decision Tree 25.03 10.97 12.15
Random Forests 25.86 11.04 11.68
GBT 78.00 5432 61.34
XGBoost 20.26 18.26 17.68
LightGBM 18.81 6.94 7.83
Linear SVM 173.84 56.18 52.60
MLPC 52.33 31.30 41.22
Naive Bayes 6.56 262 292
Logistic Regression 9.73 17.74 19.09

ent numbers of records. We compared the usage of 2 CPUs
(Intel Core 17-6700HQ and Intel Xeon Gold 5120) using the
hist XGBoost tree method and a NVIDIA GeForce GTX
1060 using gpu_hist.

For the Intel Core 17-6700HQ and NVIDIA GeForce GTX
1060 scenarios, we performed the tests using a single worker
and a single executor with 7 cores (plus one additional core
for the driver). For the Intel Xeon Gold 5120 CPU, we eval-
uated the single worker scenario with one executor and the
cluster scenario with 3 workers (one executor per worker,
with a total of 23 cores plus one additional core for the driver).

When handling inputs with fewer records, the Intel Xeon
Gold 5120 CPU using a single worker provided the best re-
sults, since it avoided additional synchronization overhead.
As expected, as the number of records increases, there is a
clear advantage of pursuing a distributed approach with mul-
tiple workers or using a GPU-based approach. In our setup,
after 5 million records, the NVIDIA GeForce GTX 1060 out-
performed all the remaining approaches.

2500

GPU - NVIDIA GeForce
GTX 1060 (1 worker)
CPU - Intel Core
i7-6700HQ (1 worker)
2000 1 CPU - Intel Xeon

Gold 5120 (1 worker)
CPU - Intel Xeon

Gold 5120 (3 workers)

1500 |

1000 -

Training Time (seconds)

500 -

0 2 4 6 8 10
Number of Records (millions)

Figure 17: Comparison between CPU and GPU for XGBoost
training times using synthetic data derived from DS1

4.4. Additional scenarios and SCADA support
The proposed framework is not limited to a single sce-
nario or protocol. It was designed as a generic data-driven

architecture, suited to cope with the majority of the surveyed
types of attacks, which mainly refer to either generic layer
2/3 attacks that are also valid on SCADA networks (such
as network scans and ARP-based attacks) or layer 7 attacks
against specific SCADA protocols (e.g. [78]).

Some of those attacks might require complementing data
sources and detection approaches, such as SCADA protocol-
specific analysis or the usage of NIDS for detecting spe-
cific attack signatures. Nevertheless, the proposed frame-
work is flexible enough to encompass, integrate and nor-
malize those additional probes and data sources. Not all
the attacks absolutely require complex machine-learning ap-
proaches. Some of them can also be detected using smart-
probes and signature-based approaches. Nevertheless, by
following a holistic approach, integrating different detection
sources, the JADS becomes much more powerful and able
to adjust to different scenarios.

The analysis of protocol-specific attacks or specialized
probes is outside the scope of this paper. Nevertheless, the
interested reader might refer to some of our previous works
and open-source contributions (e.g. [78], [76], [77]) ad-
dressing layer 2/3 and layer 7 SCADA attacks.

4.5. Evaluation of Event Messaging

As mentioned before, the event messaging layer plays
an important role in how the components communicate with
each other. Therefore, it is important to understand how its
settings can be used to tune the platform to meet the require-
ments for the next-generation of IACS, such as event pro-
cessing capacity and scalability.

For the Kafka experiments, we set up a Kafka cluster
with 3 brokers, each one running on a different virtual ma-
chine with 8 vCPUs, 32GB RAM and 850GB of disk. Sim-
ilarly to the anomaly detection scenario, all the tests were
conducted in a Dell PowerEdge R440 host with an Intel(R)
Xeon(R) Gold 5120 CPU (28 vCPUs), 256GB RAM and
3.2TB datastore (4x 10K RPM SAS HDD in RAID6 via
PERC H740P controller) running an ESXi 6.7 hypervisor
instance. An additional virtual machine with 8 vCPUs, 8 GB
RAM and 20GB was also configured to work as a Kafka
client (both producer and consumer). All the virtual ma-
chines, attached to the same vSwitch (with traffic shaping
disabled), run CentOS 7.3 x64 with XFS. The broker in-
stances were based on Confluent Docker images 4.0.0 (Apache
Kafka 1.0.0).

Apache Kafka can be configured and optimized for dif-
ferent service goals, such as throughput, latency, durability
or availability [18]. Within a SCADA environment, we ex-
pect to handle at least two different types of messages: (1)
high-priority alarms, as a result of the output of specialized
detection probes; and (2) low-priority events such as teleme-
try data. Such distinction is important to fine-tune the plat-
form for each use case. In the first case, it is critical to ensure
low latency, meaning that the event should be forwarded and
processed as soon as it is received. In the second scenario,
we could maximize the throughout by optimizing the num-
ber of events and the network overhead.
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Based on a previous literature review [54], we evalu-
ated the most significant configurations, including the mes-
sage size, the acknowledgement level, the buffer size and the
replication and partition number. For instance, a Kafka pro-
ducer might be configured with the batch-size and linger.ms
options to control whether the messages are sent as soon as
they are ready or to add a delay based on size or time respec-
tively.

Additionally, the producers can also send the events us-
ing different levels of acknowledgement, thus impacting the
performance: asynchronous (i.e. without waiting for broker
acknowledgements), synchronous with asynchronous repli-
cation (i.e. waits for an acknowledgement after the leader
commit), or synchronous with synchronous replication (mean-
ing the producer waits for the acknowledgement after a con-
figurable number of replicas acknowledgements.

On the broker side, different settings impact the overall
performance, both at the cluster and topic levels. Different
topics can have different levels of replication and partition-
ing. The replication factor increases availability, which is
critical for scenarios with strict fault-tolerance requirements
(e.g. atopic with a replication number of 3 tolerates 2 bro-
ker failures). The partition number is used as a parallel ap-
proach to improve both broker and client performance. Dif-
ferent partitions from the same topic can spread among dif-
ferent brokers. In the same way, each partition can be as-
signed to different consumers. Nevertheless, a high number
of partitions might increase downtime in the case of a broker
failure, due to the partition reassignment process. Regard-
ing message size, no limit is enforced by our IADS message
data model. Based on our experiments, a typical message
containing all the mandatory fields varies between 2KB and
5KB before Avro encoding, and between 500 and 1000 bytes
after encoding.

This first test we conducted consisted of sending 1 mil-
lion raw messages using the native Kafka client tool kafka-
producer-perf-test with different configurations for the client
and broker. The following results summarize the obtained

values in terms of the number of messages per second, through-

put and latency. All the tests were repeated 10 times with the
confidence interval being computed using a Student’s T dis-
tribution with a confidence level of 95 %.

Figure 18 shows how the message size negatively im-
pacts the processed messages rate for different acknowledge-
ment levels. The rate sharply dropped from over 100,000
messages per second (messages with 1 KByte) to 20,000
messages per second (7 KByte). The measured difference
between full acknowledgement (acks = all) and no acknowl-
edgement (acks = 0) decreased as the message size grows.

Figure 19 shows how message size affects performance.
For 1KB messages, we achieved over 80,000 records per sec-
ond, a value that decreased sharply for larger sizes. A similar
trend is observed for throughput.

Figure 20 shows the effect of different topic configura-
tions, namely the number of partitions and the replication
factor. For fully synchronous producers the replication fac-
tor imposes a severe negative impact, as each message needs
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Figure 18: Average records / s versus the message size for a 1
Million messages production test. Three brokers, 3 partitions,
replication factor 3. Error bars shows the 95% Cl, n=10
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Figure 19: Batch Size 16384 bytes, Replication Factor 1, Num-
ber of partitions 1

to be committed by all the replicas before being acknowl-
edged to the producer.

4.6. Scalability

As stressed before, next-generation IACS are expected to
create new monitoring challenges, such as the need to design
scalable monitoring solutions able to flexibly accommodate
both small to large domains.

As already mentioned, our framework intrinsically achieves
this. The key components it is built upon, Apache Kafka
and Spark, were designed not only as high-performance sys-
tems but also as tools able to meet such heterogeneous use
cases. The scalability of our framework in the scope of these
two components has already been evaluated in this paper (cf.
Sections 4.5 and 4.3, respectively).

Regarding Kafka, an elastic number of brokers ensure
we can horizontally distribute the load across multiple in-
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Figure 20: 3KB message size, Batch Size = 16384, Acknowl-
edgments = all

stances, where each one might run on commodity hardware,
up to high-end configurations, depending on the actual de-
ployment scenario. Moreover, whereas there are no strict
hardware minimum requirements [14] [17] [22], decent per-
formance can be achieved starting from 32GB of RAM for
small scenarios. CPU performance is not typically a major
concern, but more powerful CPUs can be leveraged for en-
crypted communications, likely to be required in TADS de-
ployments. Additionally, more cores can also unlock new
levels of parallelization, and multiple disks / RAID setups
can significantly improve I/O performance (note that the mes-
sages are always persisted to disk and optionally replicated).

Likewise, Spark is naturally designed to scale, both ver-
tically and horizontally, with its highly optimized distributed
and parallel approach — from small deployments, of 8-16
cores per machine, 8GB RAM and 4-8 disks per node, up
to tenths of CPU cores and GBs of RAM per machine and
network links over 10Gbps (since the data is maintained in
memory, fast links helps to avoid network bottlenecks) [12].
Additionally, as described before, not only the number of
nodes and executors impacts the cluster performance, as dif-
ferent resources types (such as GPUs) may also significantly
boost the overall performance.

4.7. Wrap-up

We showcased the entire process of binary classification
to detect DNS ex-filtration scenarios based on a wide range
of supervised machine learning algorithms, demonstrating
the IADS flexibility when incorporating and combining dif-
ferent algorithms.

Despite being constrained by commodity hardware, the
evaluation of the proposed IADS shows promising results.
Apache Spark has proven to be a good match for the imple-
mentation of the SIEM component, providing efficient dis-
tributed computation capabilities, as well as a unified ap-
proach for both streaming processing and batch processing.
The SIEM component is a key component to address com-
plex anomalies that cannot be easily detected by signature or
threshold-based mechanisms.

90k
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For the Kafka-based event transport and preprocessing
mechanisms, results have proven its ability to deal with dif-

ferent scenario requirements such as low-latency, high-throughput

or durability, while keeping adequate performance levels.

5. Conclusions

Over recent years, most [ACS-related security develop-
ments have been focused on SCADA protocols and their vul-
nerabilities, an approach that has spawned a multitude of
SCADA security-related components and solutions. Apart
from this, the majority of the research and industry efforts
seems to have been narrowed to theoretical or specific prob-
lems.

Taking a somehow different path, the framework hereby
presented enables the integration of different techniques and
algorithms, rather than being a replacement for existing domain-
specific detection tools. Common signature-based probes
and dedicated smart probes are still useful for detecting lo-
cal anomalies and known vulnerabilities. Nevertheless, new
paradigms such as IIoT or 5G are pushing the focus to in-
tegration, performance and scalability. The proposed IADS
is therefore a step beyond, constituting a framework where
multiple heterogeneous components can be integrated and
used together, providing an efficient and holistic approach
for monitoring the security of a complex SCADA environ-
ment. The intermediate processing layer and the usage of
domain processors represent an important step towards sup-
porting edge computing for optimization, preprocessing and
filtering of what is pushed to the upper layers.

On the other hand, the usage of such highly flexible and
distributed approaches brings new challenges, which still need
further research.

The most obvious challenge refers to the increased com-
plexity of managing the platform itself. Ideally, the frame-
work should also integrate zero-touch solutions, including
self-monitoring and self-healing capabilities which would
require minimal human-intervention.

Likewise, the ML process itself should not represent a
complex task for the operator. It should be automated as
much as possible, in line with the emerging MLOp concept
[61]. We have presented a supervised anomaly detection use
case (based on the DNS exfiltration scenario) which still re-
quired previous training and labeling. The feasibility and
practical evaluation of the numerous anomaly detection al-
gorithms proposed in the literature for other attack scenarios
also needs further work.

Finally, in future, the integration of advanced privacy-
preserving mechanisms to ensure data privacy (e.g. in the
case of external data computation with a ML algorithm run-
ning on a third-party server in the cloud) should also be ad-
dressed.
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