
,

Toward autonomic service operation for cloud
applications: the AESOP project

Raul Barbosa1, João Tomás1, André Bento1, João Soares2, Lúıs Ribeiro2,
António Ferreira2, Rita Carreira3, Filipe Araújo1

1University of Coimbra, CISUC, Department of Informatics Engineering
2Fiercely, Rua Pedro Nunes, C-2.28, Coimbra, Portugal

3Virtual Power Solutions, Coimbra, Portugal
,

Introduction

A software solution that is deployed to the cloud must
guarantee availability and performance standards that are
crucial for mission- and business-critical applications.
Although there are numerous approaches for monitoring technical
parameters, it is not possible to infer the quality of services in oper-
ation and whether the service-level objectives (SLOs) are fulfilled.As
a result, there is a gap between the availability and performance
needs of software solutions and what you can see infrastructurally
with today’s tools.
To overcome this gap, the AESOP project (Autonomic
Service Operation) aims to develop a platform that allows
the specification of service parameters, per software ap-
plication, and the creation of an adaptive feedback loop
that acts on these applications.
With this platform we will be prepared to answer essential questions
such as:

IThe parameters imposed by the business are being guaranteed by
the software in operation?

IHas a certain new deployment increased or decreased my resource
consumption?

IWhat is the root cause localization of a given failure and what
autonomic actuations have been attempted?

This feedback loop takes advantage of virtualized infrastructure ap-
proaches, based on infrastructure as code principles, expanded and
strengthened to address the applicational detail and not just the in-
frastructure. With this, the characterization of the availability and
business performance parameters to be monitored becomes explicit,
both in the development phase and in the operational phase.

Low MTTR is Achievable in Microservice Applications

The collected results consist of MTTD (the time required to detect
and diagnose a failure in the managed application) and MTTR (the
time required to actuate in order to recover the application). It
should be highlighted that some failures may not be fully recover-
able, requiring operator intervention. Figure 1 depicts these metrics.

Failure N

Detection & 
Diagnosis Repair

Failure N+1Resolve

Correct serviceCorrect service Time
MTTD MTTR

Figure 1: Availability components.

The experimental testbed is a virtual private cloud deployed on
OpenStack with a total of 5 virtual machines. We deployed Ku-
bernetes on 4 of them with a single master and four worker nodes.
The remaining machine hosts the ElasticSearch database, where the
Jaeger Ingester stores spans. Each machine in the Kubernetes clus-
ter has 8 vCPUs, 16GB of RAM, 100GB of storage and runs Debian
10 operating system, with the exception of the database, which has
4 vCPUs and 8GB of RAM.

restart version downgrade

2
4

6
8

Recovery action

T
im

e 
(s

ec
on

ds
)

Figure 2: Mean-time to detect and diagnose.

restart version downgrade

6
7

8
9

10
11

12

Recovery action

T
im

e 
(s

ec
on

ds
)

Figure 3: Mean-time to recover.

Figures 2 and 3 show the experimental results. The mean-time to
diagnose is on average 4 seconds, for both recovery actions. Restart
takes an average of 8 seconds and version downgrade takes an av-
erage of 10 seconds. Low MTTR can therefore be achieved.

Autonomic Service Operations Architecture

The proposed architecture aims to detect, diagnose and repair failures (self-healing) in
microservice applications. The ability to autonomically recover from failures im-
proves availability by reducing the mean-time to recover from outages. The
architecture is inspired by IBM’s MAPE-K feedback loop and uses a pub-sub paradigm.

Fault Detection
and Diagnosis

Monitoring Probes

Gather system 
metrics

monitoring topic

analysis topic

actuation topic

Mitigation Plan
Selector

Executor

Gather fault information 
from system metrics

Choose the error recovery 
action according to the fault 

information received

Apply the recovery actions 
to the system

Legend:
Service

Kafka Topic
Managed Application

Service 1 Service 2

Service 3 Service N

Figure 4: Autonomic architecture overview.

Figure 4 provides an overview of the proposed architecture, consisting of the four compo-
nents in the MAPE-K loop, using Apache Kafka as their middleware to stream messages
among each other, allowing the exchange of high volume data in a fast and reliable manner.

Challenges of Autonomic Service Operation

Monitoring is conceptually simple: sensors or probes measure/collect information about
the system and feed it into the control loop. However, there are several open challenges:

IUnavailability measurement is indirect and inaccurate. Even the most advanced tools
presently used focus on counting HTTP errors.

IMeasuring recovery times is disregarded in favor of best-effort. Once a failure or
anomaly occurs and recovery actions are taken, it is necessary to monitor the time to
resume operations.

IThere’s a gap between low-level metrics and high-level SLOs. There aren’t off-the-shelf
sensors available for software, so applying control theory becomes difficult.

IThere’s a lack of architectural knowledge. In spite of decades of software architecture
research, the scope of its application is very narrow.

Analysis is the second stage of the MAPE loop, aiming to identify discrepancies between
the current state and the desired state.

IThere’s a lack of clear contracts among services. However, unless one uses a design by
contract approach, it is unknown if the fault was on the caller side or on the callee side.

IReliability of diagnosis influences the correctness of actuation. Unless root-cause
localization is reliable, actuation shall take place on the basis of wrong information.

IThe actuation risk varies according to the foreseen downtime cost. Being roughly
correct is better than precisely wrong and not all components are equally valuable.

Planning is the stage that determines the actuations that must take place to lead the
system back to the desired state once it has deviated from it.

IThere’s a need to dynamically adjust the risk of actuation. Not all downtime has the
same cost.

I It is necessary to predict the downtime generated by actuation. Repairing and actuating
over a system in operation may, inadvertently, lead to profit loss and/or incurring costs.

ICloud applications should be designed for recovery. Components should be restartable
and relocatable, with the application state being transactionally stored in a database.

Institutions

www.dei.uc.pt June 25, 2021 rbarbosa@dei.uc.pt

http://www.dei.uc.pt
mailto:rbarbosa@dei.uc.pt

