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Abstract

Objective. In this paper, an automated stable tidal breathing period (STBP) identification method
based on processing electrical impedance tomography (EIT) waveforms is proposed and the possibility
of detecting and identifying such periods using EIT waveforms is analyzed. In wearable chest EIT,
patients breathe spontaneously, and therefore, their breathing pattern might not be stable. Since most
of the EIT feature extraction methods are applied to STBPs, this renders their automatic identification
of central importance. Approach. The EIT frame sequence is reconstructed from the raw EIT
recordings and the raw global impedance waveform (GIW) is computed. Next, the respiratory
component of the raw GIW is extracted and processed for the automatic respiratory cycle (breath)
extraction and their subsequent grouping into STBPs. Main results. We suggest three criteria for the
identification of STBPs, namely, the coefficient of variation of (i) breath tidal volume, (ii) breath
duration and (iii) end-expiratory impedance. The total number of true STBPs identified by the
proposed method was 294 out of 318 identified by the expert corresponding to accuracy over 90%.
Specific activities such as speaking, eating and arm elevation are identified as sources of false positives
and their discrimination is discussed. Significance. Simple and computationally efficient STBP
detection and identification is a highly desirable component in the EIT processing pipeline. Our study
implies that it is feasible, however, the determination of its limits is necessary in order to consider the
implementation of more advanced and computationally demanding approaches such as deep learning
and fusion with data from other wearable sensors such as accelerometers and microphones.

1. Introduction

Electrical impedance tomography (EIT) is a non-invasive functional imaging modality that makes continuous
chest examinations possible without any radiation exposure in either adults or children (Brown 2003, Pulletz
etal 2010, Frerichs eral 2017, Martins et al 2019). Compared to other modalities, EIT is highly portable, it can
support short and long-term monitoring and its cost is relatively low. Due to its high temporal resolution,

EIT is able to detect dynamic changes in the pulmonary air content in the examined chest plane, a necessary
precondition for ventilation distribution assessment and regional ventilation heterogeneity detection.

In a clinical setting, EIT has been used mainly in ICUs for mechanically ventilated patients (Kobylianskii et al
2016). These patients typically do not move and their ventilator-controlled breathing pattern is stable allowing
the use of a number of well-known and established EIT analysis methods. Recently, the development of wearable
EIT systems provided the possibility of monitoring regional lung ventilation in other patient groups as well
(for instance, in patients with chronic lung diseases), even outside the hospital (Chouvarda et al 2015,
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Rapin et al 2019). These patients breathe spontaneously, and thus, their breathing pattern is not stable. Effects
like body movement, speech, cough, sigh, exercise, change/loss in electrode contact impact the recordings and
impose great challenges in automated EIT data analysis.

Specifically, in wearable EIT devices, electrodes are integrated into belts or vests in order to minimize user
intervention concerning placement issues like electrode spacing and adjustment. In most EIT device
configurations 16 or 32 electrodes are used typically placed in one transverse (or slightly oblique) plane. The
main factors influencing chest EIT measurements in wearable EIT, and consequently the identification of stable
breathing, are:

* Electrode contact—Modern electrodes can sense and continuously monitor the electrode-skin contact quality.
Therefore, EIT data acquisition periods corresponding to low-quality electrode contact are detected and
either rejected or processed with special methods.

+ Missing/faulty electrodes—EIT images of best quality are achieved when the EIT signal quality is good at all
electrodes (Adler 2004, Hartinger et al 2009). Modern EIT wearable vests automatically record electrode
contact information during acquisition, enabling the detection of time periods of missing or low quality data.

* Body movement—Movement of patients during EIT data acquisition causes significant effects on the recorded
measurements (Vogt et al 2016). EIT measurements recorded during body movement can be identified
through accelerometers.

+ Posture—EFEIT data acquisition protocols require specific body posture. However, during various pulmonary
manoeuvres, but even during quiet tidal breathing, subjects move involuntarily to facilitate and improve their
ventilation (Zhao et al 2013, Becher et al 2015, Frerichs et al 2016, Lehmann et al 2016, Lasarow et al 2021). The
forward movement of the torso and the elevation of the arms cause a significant effect on the EIT waveforms
registered during otherwise undisturbed tidal breathing (Vogt et al 2016).

+ Type of ventilation—Clinical studies have shown that the type of ventilation affects the EIT findings
(Blankman et al 2013, Mauri et al 2013, Yoshida et al 2013) and, therefore, ventilation type should be recorded
to ease the data interpretation. The factors affecting EIT acquisition presented so far (contact, posture,
movement) can be identified automatically via advanced technological solutions such as smart electrodes/
sensors and accelerometers. This is not possible for the identification of the ventilation type (tidal breathing,
deep breathing or forced maneuver) and, therefore, data-driven approaches are used: the ventilation type is
inferred from the analysis of the EIT measurements as described in the following section.

In addition, it is possible that other activities such as speaking, eating or coughing take place in parallel with
otherwise stable tidal breathing. In order to detect these activities additional sensors are required which increases
complexity as well as intrusiveness, potential points of failure, and patient discomfort, and therefore, it is
desirable not only to study whether or not they affect EIT recordings but also to investigate the feasibility of
recognizing their presence in the EIT signals. Or at least, whether it is possible to discriminate stable tidal
breathing periods (STBPs) from all other breathing patterns. Fast and simple algorithmic solutions are
preferable due to the distributed nature of most remotely monitoring projects where a number of wearable vests
are continuously recording and transmitting biomedical data (EIT, ECG, PPG, lung sounds, etc).

The aim of this study was twofold: (i) to examine the feasibility of identifying STBPs using features extracted
from the EIT global impedance waveform (GIW) or similar EIT summary representations and (ii) to develop a
method for the automated identification of such periods with minimal number of parameters. The proposed
identification method, the EIT data acquisition protocol, and the techniques for its statistical analysis are
presented in detail in section 2. In section 3, the results of the application of the proposed method are presented,
and our observations are discussed, analyzed and possible future directions are suggested.

2. Methods

2.1. Subjects

The study was carried out within the framework of the European Union projects WELCOME (Grant No.
611223)and WELMO (Grant No. 825572) aiming to develop an integrated care approach for continuous
monitoring, early diagnosis and detection of worsening events and treatment of patients suffering from chronic
obstructive pulmonary disease. It was approved by the Institutional Ethics Committee and informed written
consent was obtained from each study participant. We analyzed 69 ten-minute recordings of EIT data obtained
in 10 lung-healthy adult subjects (4 men, 6 women) with no history of lung disease and average age of 40 + 9
years, body height of 176 4+ 13 cm and body weight of 70 & 15 kg.
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Figure 1. EIT image acquisition and processing pipeline. High level analysis of EIT (stage 5) depend on stable tidal breathing detection
(stage 4, red lines). However, in wearable EIT this is challenging because breathing is not stable depending on the activities of the
subject.

2.2.EIT measurements and reconstruction

The Goe-MFII EIT system (CareFusion, Hochberg, Germany) was used for EIT data acquisition. An array of
sixteen self-adhesive electrodes (Blue Sensor L-00-S, Ambu, Ballerup, Denmark) were placed around the chest
circumference at the level of the fifth to sixth intercostal space of each studied subject (figure 1, stage 1). The
reference electrode was placed on the right side of the abdomen. The reference electrode in the GoeMF II system
serves the same role as the driven right leg electrode in most clinical ECG systems; it is used to reduce the
common-mode signal level in the body so that any residual non-zero common mode gain the input amplifier
has less effect on the signal. Current injections with amplitude 5 mA,,,,; at a frequency of 50 kHz were applied
through adjacent pairs of electrodes in a sequential rotating process and the resulting potential differences were
measured by the remaining electrodes (adjacent current stimulation pattern). The EIT scan rate was 33

images s~ ' and each of the 69 recording sessions had a duration of 10 min. Raw EIT images/frames were
reconstructed using the Graz Consensus Reconstruction Algorithm (GREIT) as implemented in the EIDORS
public software (Adler and Lionheart 2005, 2006, Adler et al 2009, Gomez-Laberge et al 2012). The
reconstruction used an adult thorax shaped model with a single plane of 16 electrodes and the adjacent
stimulation pattern (figure 1, stage 2, Left). Ineach 32 x 32 EIT, the non-zero pixels showed the normalised
difference between the instantaneous and baseline pixel impedance (i.e. the relative impedance change). The
baseline pixel impedance was equivalent to the average pixel impedance determined during a selected STBP.

2.3.Protocol
The examined subjects were instructed to perform different ventilation and non-ventilation manoeuvres during
the data acquisition at random order. As shown in figure 2, a typical sequence included:
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Figure 2. Changes in global impedance waveform (rel. AZ) in alung-healthy 43 year old man. Stable tidal breathing periods are
interrupted by body movements, cough, speech and different breathing pattern (bold).

+ Stable tidal breathing in upright sitting position,

+ breath holding,

+ elevation of arms (left, right or both) one or more times continuously,
« forced full inspiration and expiration manoeuvres,

+ coughing,

+ speaking, laughing, eating

+ change in posture (seated to standing and vice versa, torso rotation).

The start and end time points of each of the mentioned manoeuvres together with their description were
manually recorded by the expert physician supervising the EIT data acquisition process.

2.4. Data analysis

The standard EIT image acquisition and processing pipeline is shown in figure 1. Itis emphasized that in
wearable EIT systems, the overall EIT processing pipeline must be automated, since there is no possibility of user
interaction of any type. The automatically reconstructed EIT image sequence is the output of stage 2 where the
reconstruction algorithm is applied to the raw voltage measurements provided at stage 1. At stage 3, the GIW is
computed and processed by low-pass filtering for the isolation of its respiratory component. The cutoff
frequency was determined automatically based on the magnitude of the Fourier-transformed raw GIW to
identify the frequency with the largest spectral peak f, __andsetto 2f, _(Gomez-Laberge etal 2012)°. Itis
reminded that the GIW represents the relative impedance AZ,,; as a function of time, since for each 32 x 32
EIT image frame the average value is stored (Frerichs et al 2017, Khodadad et al 2018). Breath detection is
achieved by computing the local minima and local maxima of the respiratory GIW, since they correspond to
end-expiratory and end-inspiratory points, respectively (Hahn et al 1996). After the elimination of false positive
(or weak) breaths (see subsequent subsection), the remaining breaths constitute the output of stage 3. At stage 4,
the respiratory GIW together with the detected breaths sequence is processed for the extraction and
identification of STBPs. As mentioned before, stage 4 is the main focus of the current study (feasibility of
automatic detection in wearable EIT and accuracy). In the following subsections, the terminology and
computational steps of stages 3 and 4 are presented in detail.

6 The MATAB source code for filtering can be found at the EIDORS website (http://eidors3d.sourceforge.net/tutorial /lung_EIT/cg
2012_ards_recruitment.shtml).
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Figure 3. The raw global impedance waveform (GIW) (top left) is filtered for the extraction of its respiratory component (top right).
End-inspiration and end-expiration points are identified as local maxima and local minima, respectively. Weak local maxima (red
arrows) are misleading indicators of the existence of separate breaths (false positives). In our approach, these weak breaths are
absorbed by the most appropriate, left or right, breath (bottom).

2.4.1. Breath detection and weak breath elimination

As mentioned in the previous paragraph, a frequent complication in breath detection from the respiratory GIW
is the existence of weak local maxima that survived the low-pass filtering depending on the relative positions of
respiratory and cardiac rate harmonics. An indicative example is shown in figure 3. The respiratory component
(figure 3, top right) of the raw GIW (figure 3, top left) is the result of the application of low-pass filtering to
eliminate the higher frequency cardiac component of the raw GIW. The indicated local maxima (red arrows)
cannot be accepted as end-inspiration points of regular breaths since they are too weak (low amplitude) and too
short (brief duration) based on precalculated thresholds for amplitude and duration, respectively. In other
words, they are false positives and, therefore, they are eliminated in the sense that they are considered part of the
appropriate neighboring (left or right) breath. This retrospective merging process is illustrated in figure 3
(bottom). The false positive weak breath i defined by local minimum ; and local maximum M,; is considered
partofbreath i — 1resultingin relabeling the initially detected breath i + 1asbreath i.

A candidate breath i with start-inspiration at time m;, end-inspiration at M; and end-expiration at m;_; is
considered weak if the tidal gas volume exhaled or inhaled is less than a threshold V.. (figure 4).
Mathematically, the minimum tidal volume V™" defined as V™™ = min (V;"?, V), where V", VP are
the gas volumes corresponding to the inspiration and expiration phases of breath i must be less than V. By
denoting the respiratory component of GIW as G, we obtain (figure 4):

Viinsp =G (Ml) _ G(mi)) Viexp — G(M1) - G(m1 + l)

For the determination of threshold V,,..x, we assume that more than 50% of the total number of detected
candidate breaths belong in stable breathing periods. In this way, the median value of the tidal gas volume
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Figure 4. GIW-based breath features (see text).

exhaled or inhaled for the whole set of candidate breaths is an accurate estimate of this gas volume for tidal
breaths. Itis noted that the retrospective processing of the initially detected breaths allows the computation of
the threshold V.., thus eliminating the weak breaths via a second pass of the breath sequence. Also, in this way,
other types of breaths (such as forced manouvres) may be subsequently detected and processed. This is not
possible with ‘real time’ breath detection and elimination where breaths are detected based on maxima and
minima of the last seconds of the GIW (Driger 2021).

2.4.2. GIW-based breath features
The identification of the STBPs was based on breath feature variation analysis using a moving (sliding) window
approach. Specifically, the GIW-derived features for breath b; were:

+ thetidal volume, V;, defined as the maximum of tidal gas volume exhaled or inhaled, thatis, V; = max (Vf’“p , VP,

+ thebreath duration, D; = m;;; — m; which is the sum of the durations of the inspiration and expiration
phases D/"¥, Df*®, respectively (figure 4), and

+ the end-expiratory impedancelevel, Z™ = G(m;; ).

The desired ventilation homogeneity of a breathing period (i.e. of a sequence of consecutive breaths) can be
characterized by the coefficient of variation (CV) of tidal volume, CVy, duration, CV;, and end-expiratory
impedance level, CVy. Itis reminded that the CV of a distribution is defined as the ratio of the standard deviation
of the distribution over its mean. For the sequence of consecutive breaths of a STBP, B = (by, bs,...,b,), the
above CVsare expressed as

SOV Vi, ooy Vi
W = St

SD(Dy, Dy, ..., Du)

CVp =
b Mean(D1, Dy, ..., D)’

SD(Z, Zy, -5 Zn)
V = -
CVz Mean(Z, Zo, -1 Zn)

where V;, D;, Z; are the tidal volume, duration and end-expiration impedance of breath b; fori € {1, 2,...,n}.
Mean(-), SD(-) represent the sample mean and sample standard deviation of their arguments.

2.4.3. Stable breathing period detection
The sequence of detected breaths, S = (b1, by, ..., by), isinput to a sliding window algorithm where S is
scanned from left to right: at each position i, i = 1, ..., N — W + 1, the sequence of consecutive breaths
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Figure 5. Stable tidal breathing period detection based on a sliding window of width W = 6 breaths. The input breath sequence
contains N = 14 breaths. The outputarrayAhas N — W + 1 = 9 elements (111111000). The first six 1 s indicate that probably the
breath sequence defined by the union of S, Sy, -+,S6 is a STBP containing breaths (1, 2,---,11).

S; = (b, by, ..., bisw_1) constitutes the current window of width W for which it is decided if it is a STBP of
length W or not, according to the following rule:

S: is STBP IF (CVy < Ty) and (CVp < Tp) and (CVz < Ty), (1)

where Ty, Tp, T are predetermined thresholds for the CV of tidal volume, duration and end-expiration rel.
impedance, respectively.
The output of the above scanning algorithm is an array A of size N — W + 1 with the following values

. 1, ifS;is STBP
Alil=4" ! .
g {0, otherwise

In other words, A[i]is 1if the sequence of consecutive breaths that correspond to S; which is

(bi, bis1s -..» birw—1)is STBP. It is expected that sequences of consecutive 1 s in A signify the existence of longer
stable breathing periods since neighboring 1 s indicate highly overlapping STBPs. Specifically, if both A[i] and
Ali + 1] equalto 1, thenweexpectS; U Siy1 = (bj, biy1-..,birw) be STBP oflength W + 1. By generalizing
this heuristic merging rule, for a sequence of m consecutive 1 sin A, we expect the breath sequence

SiUSiti U ..U Sitm = by, bisy, -5 bizw—14m), be STBP oflength W + m — 1. For this reason, in the last
step of the STBP detection algorithm STBPs defined by consecutive 1 sin A are identified and merged to longer
STBPs (figure 5).

2.4.4. Evaluation

The final output of the proposed STBP detection method (i.e. the output of stage 4 in figure 1) is a set of detected
STBPs where each STBP is defined by a sequence of consecutive breaths as presented in detail in the previous
section. To assess the performance of the method, we applied the method to 69 EIT recordings of duration

10 min each. In these recordings, the true STBPs were not identified as sequences of consecutive breaths.
Instead, the expert manually described them as time intervals by their start and end time points (in seconds). For
this reason, the algorithmically detected STBPs were also represented as time intervals. Given two STBPs, Py, P,,
represented as time intervals, P; = (s, 1), P, = (s,, €;) where sy, s, are their startingand ey, e, their end time
points, respectively, their Jaccard similarity index is defined by

J(P1, Py) = J( (s, e, (52, €2))
_ |(s1, 1) N (52, €3)]
|Gs1, ) U (52 €2) |
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Figure 6. Jaccard index between time intervals.

where | (s}, e1) N (5, )| represents the duration of the overlap in time between the two intervals (figure 6) and
|(s1, e1) U (s2, €2)] their total duration. Jaccard index can be values between 0 (no overlap) and 1 (time intervals
coincide). In our case, the following modified Jaccard similarity index was used

]m(PTrue’ PDetected) = ]( (s1> er), (sps eD) )
(s> er)N(sp, ep) |

|(sT5 er)|

where Pryye = (575 €7), Phetected = (Sp> €p) are time intervals corresponding to a true and a detected STBP,
respectively. Positive values of J,, indicate that part of the corresponding true STBP has been detected. The
maximum value of ], is 1 indicating complete detection of the corresponding true STBP (figure 9, STBPs 1,2, 8
and 9). On the other hand, zero values of J,, identify false positives i.e. identified STBPs that are not true (figure 9,
STBPs 3 and 4).

2.4.5. Global inhomogeneity (GI) and fraction of ventilation indices

The calculation of the widely used ventilation heterogeneity measure, namely, the GI index, for each breath is
based on the corresponding tidal image, DI, a functional image each pixel of which represents the difference in
impedance between end-inspiration and end-expiration (Zhao et al 2009). Initially, the median value,

med (DIy), of pixels belonging to the lung area L of this image is computed. Then, the normalized sum of the
absolute difference between the computed median value and every pixel value, DI, is considered to indicate the
variation in the tidal volume distribution in the whole lung region:

ZX’Y . L|DIxy — med(DIp)|

Zx,y €L Dlxy ’

where the required lung area, L, is identified according to Zhao et al (2010).

The right ventilation fraction represents the fraction of ventilation volume that corresponds to the right side
of the chest and is computed by the ratio of the sum of the values of the right half of the tidal image DI over the
total sum.

GI =

2.4.6. Statistical analysis

The proposed STBP identification method was implemented in MATLAB R2019a (MathWorks, Natick, MA).
EIT reconstruction was based on GREIT as implemented in EIDORS. Data was tested for normality using the D
“Agostino & Pearson normality test and between-group comparisons were performed using one-way ANOVA.
Data was analysed using MATLAB R2019a and GraphPad Prism 9.

3. Results and discussion

The proposed stable tidal breathing method was applied to 69 ten minute EIT recordings collected from 10
healthy volunteers. The total number of true stable breathing periods identified by the expert was 318. Figure 7
shows the STBP identification results as distributed in the 10 healthy subjects. All programs executed offline on a
personal computer with average processing time less than one second per each 10 min EIT recording. In total,
294 STBPs were correctly identified (true positives) giving a success rate equal to 92.45% approximately

(figure 8). All correctly identified STBPs had positive modified Jaccard similarity index with 84% of them having
value greater than 0.8. The number of false positives (not stable breathing periods that were identified as stable)
was 48. The thresholds Ty, Tp, T ofthe CVsin equation (1) were set to 0.25,0.25, 0.2 and the size of the sliding

8
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Figure 7. Stable tidal breathing period identification results for the 69 ten minute EIT recordings collected from 10 healthy subjects.
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Figure 8. Accumulative STBP identification accuracy (Identified True TB periods: 294, Not Identified True TB periods: 24, Identified
False TB periods: 48).

window Wwas set to 6. This means that all detected STBPs consist of W consecutive breaths or more and
therefore, true STBPs containing less than 6 breaths (i.e. with duration less than 20-30 s) are not detected.
Experiments with smaller values of the sliding window W (4 and 5), exhibited slightly better accuracy (around
94%), however, this was achieved at the cost of a large increase of false positives, mostly during speaking and
eating. This was expected, since depending on the particular way of speaking or eating of each subject, breathing
periods of 3,4 or 5 breaths may be projected in the GIW as STBPs. On the other hand, values of W greater than 8
excluded STBPs oflength 6, 7 and 8 which were frequent among the true STBPs. Concerning the other
parameters, namely, Ty, Tp, Tz, we experimentally observed weak sensitivity of the accuracy on the threshold
values in the range [0.2, 0.3] indicating that STBPs and non-STBPs are sufficiently separated with respect to
volume, duration and end-expiratory impedance level. The values used for the results reported above were
specified using the empirical risk minimization based on the annotated data.

Figure 9 shows an indicative STBP identification result for one of the 69 EIT recording sessions of 10 min
duration. The true STBPs identified by the expert are indicated by enclosing rectangles while the detected STBPs
are indicated by a pair of red lines connecting the end-expiration and end-inspiration points of their respiratory

9
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Figure 9. Stable tidal breathing period identification result for a 10 min EIT recording session. (top): The six true STBPs identified by
the expert are indicated by enclosing rectangles (1, 2, 5, 6, 8, 9) while the nine algorithmically identified STBPs by a pair of red lines
connecting the end-expiration and end-inspiration points of their respiratory cycles (breaths). (bottom): The corresponding average
tidal variation functional EIT images for each STBP.

cycles (breaths). In some cases, the expert considered that stable breathing can coexist with speaking depending
on the shape and form of the GIW displayed in real time by the acquisition device during recording. The
corresponding average TV functional EIT images for each STBP are almost identical (figure 9, bottom) implying
that such phases are also suitable for reliable assessment of ventilation distribution during tidal breathing.

Another feature of interest in automated EIT data analysis is the accuracy in identifying the most stable
STBP, in the sense of minimum tidal volume variation. This is useful in cases where a STBP must be
automatically selected and analyzed (figure 9, STBP 2, thicker red lines). In the results reported above, 66 out of
69 identified most stable STBPs were true STBP (95.66 % accuracy).

In addition to eating and speaking, another source of false positives in STBP identification is the ‘elevation of
both arms’ posture. According to our observations, the corresponding breathing pattern may fulfill the
requirements of a STBP as defined by equation (1) (figure 9, STBP 3). However, in many cases, the average end-
expiratory impedance of STBPs at ‘elevation of both arms’ posture is considerably higher, making their
detection possible.

For the detection and elimination of weak breaths (section 2.3), the proposed method depends on the
threshold V,,x which is used to decide if a candidate breath i having minimum tidal volume Vimi“ is weak or
not. This parameter was determined by calculating the median value of the minimum tidal volume V™" of the
whole set of detected breaths in the 10 min recording session under analysis. It is well-known that the median is a
robust estimator of the average value in the presence of outliers under the condition that these outliers represent
aportion that s less than 50% of the sample size. In our case, outliers are produced by breaths belonging to
breathing patterns other than stable STBPs: all patterns described in section 2.2. Under this condition, we found
thata value of V., equal to the one third of the computed median discriminates effectively weak breaths. In
‘real time’ breath detection, less accurate weak breath detection is expected, unless the breathing pattern is highly
regular and stable. This is the case in ICUs where mechanical ventilation is used and there are no other activities
(speaking, arm /body movement, etc). However, when the majority of breaths in the recording session
correspond to non-STBPs such as speaking, eating, moving (arms or torso), coughing and forced ventilation
manoeuvers, the estimation of value V,,,,x may become highly erroneous.

Figure 10 shows two EIT measures of ventilation distribution, the average GI index (left) and average right
ventilation fraction (right) for the identified true STBPs, the not identified true STBPs and the identified
false STBPs. Statistical analysis revealed no significant differences among the groups both for GI (ANOVA,
p-value = 0.640) and the Right ventilation fraction (ANOVA, p-value = 0.258). Since the examinations were
carried out in healthy subjects with no history of lung diseases and without any study-related interventions
known to induce redistribution of ventilation in the chest cross-section, such as horizontal postures, this finding
was anticipated and confirms the plausibility of EIT-based assessment of ventilation homogeneity (Zhao et al
2009, Reifferscheid et al 2011, Lupton-Smith et al 2014).

Figure 11 shows the average GI and right ventilation fraction per subject. It is evident that there are
statistically significant differences between different subjects. This means that the value of these two indices may
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be subject dependent and therefore, any method for establishing population wide ‘normal’ values should take
this inter-subject distribution variability feature into account. The possible causes for the observed
interindividual differences are related to age, chest anatomy and the exact location of the EIT examination plane.
It has been shown in previous studies that even small changes in the placement of EIT electrodes in the
craniocaudal direction exert an effect on the observed ventilation distribution pattern (Reifferscheid etal 2011,
Krueger-Ziolek et al 2015, Karsten et al 2016). In view of the recent development of EIT systems, where the
electrodes are integrated into wearable garments, the possible effect of placing the electrodes at slightly different
chestlocations during repeated examinations can be expected to be minimized because of the fixed electrode

positions in the wearable (Rapin et al 2019, Frerichs et al 2020).

In order to be able to obtain reliable diagnostic and monitoring information on the lung function status from
EIT examinations conducted in spontaneously breathing subjects in the future expected remote setting,
reference EIT values are urgently needed. The first attempts of creating such values have been accomplished
(Yang et al 2021), however, much larger cohorts of healthy women and men of different ages and body sizes will
have to be examined. The generation of such reference values will require examinations in multiple body
positions because postural changes induce shifts in intrathoracic and abdominal organs whereby not strictly
identical lung tissue regions are assessed by EIT. Consequently, EIT parameters are expected to vary among
postures. Ideally, the body posture should be captured along with the EIT data which would ease the

interpretation of the findings.

This study has a few limitations. First of all, the limited amount of data since: (i) it was based on healthy
volunteers, (ii) the breathing pattern and sequence of movements (arms and torso) was designed to serve as first
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of its kind feasibility study and (iii) the recorded EIT measurements were performed in an upright position only.
Many other horizontal postures (supine, prone, right and left lateral) are possible and are expected to affect the
findings due to gravity-dependent redistribution of ventilation (Frerichs et al 1996, Reifferscheid et al 2011,
Lupton-Smith et al 2014). Another limitation concerns the timing procedure used by the expert during data
acquisition. As expected, the manual time recording process was not error free. The introduced inaccuracies
were most of the time less than 3—4 s. The error assessment was based on the manual comparison of the time of
occurrence of characteristic short manoeuvres such as Forced Manoeuvres as recorded from the EIT device. In
our study, we used the relatively old Goe-MF II device which certainly is outperformed by currently available
modern EIT devices. However, this imitation did not pose nay disadvantage in view of the major goal of the
study which was to develop procedures capable of identifying stable breathing periods suitable for analysis of
regional ventilation. Such procedures are universal and device-independent and could be applied to EIT
measurements accomplished with any EIT device.

Despite its limitations, the present study showed that the accurate automated stable STBP identification is
feasible. Also, it revealed that the breathing patterns (as projected to the GIW) caused by specific manoeuvres
such as speaking, eating and ‘both arm elevation’ may appear as stable. This constitutes valuable information for
extracting recommendation guidelines and designing the most appropriate sequence of ventilation manoeuvres
during wearable EIT recording sessions in which the presence of false STBP sources is minimised. In addition,
the observed inter-subject ventilation distribution variability in combination with the fact that the ultimate goal
of monitoring is early identification of lung disease deterioration, indicates that machine learning techniques
based on personalized training datasets may be a promising future research direction.

4, Conclusion

Our study findings imply that automated selection of undisturbed, STBPs, by processing the EIT GIW is feasible
when spontaneously breathing subjects are monitored by EIT. Such stable phases of EIT data can be used to
generate various measures characterizing regional lung function over time such as GI index, fraction of
ventilation, center of ventilation and functional EIT images. Time-dependent changes in these measures might
be applied to identify lung disease deterioration or to assess the therapy effects. Preliminary results indicate thata
personalized approach should be adopted since the numerical measures seem to be subject/patient dependent.
In addition, specific activities such as speaking and eating can also be sources of stable breathing patterns, an
information that should be taken into account.
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