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Drug-Target Interaction Prediction:
End-to-End Deep Learning Approach

Nelson R. C. Monteiro, Bernardete Ribeiro, Joel P. Arrais

Abstract—The discovery of potential Drug-Target Interactions (DTIs) is a determining step in the drug discovery and repositioning
process, as the effectiveness of the currently available antibiotic treatment is declining. Although putting efforts on the traditional in vivo or
in vitro methods, pharmaceutical financial investment has been reduced over the years. Therefore, establishing effective computational
methods is decisive to find new leads in a reasonable amount of time. Successful approaches have been presented to solve this problem
but seldom protein sequences and structured data are used together. In this paper, we present a deep learning architecture model, which
exploits the particular ability of Convolutional Neural Networks (CNNs) to obtain 1D representations from protein sequences (amino acid
sequence) and compounds SMILES (Simplified Molecular Input Line Entry System) strings. These representations can be interpreted
as features that express local dependencies or patterns that can then be used in a Fully Connected Neural Network (FCNN), acting as
a binary classifier. The results achieved demonstrate that using CNNs to obtain representations of the data, instead of the traditional
descriptors, lead to improved performance. The proposed end-to-end deep learning method outperformed traditional machine learning
approaches in the correct classification of both positive and negative interactions.

Index Terms—Drug Repositioning, Drug-Target Interaction, Deep Learning, Convolutional Neural Network, Fully Connected Neural
Network, Protein Sequence, SMILES, Drug
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1 INTRODUCTION

MULTIDRUG-RESISTANT BACTERIAS are a rising health
concern to the overall population and pharmaceutical

industry as more and more drugs are becoming ineffective
and unresponsive to the symptoms and diseases associ-
ated with these kinds of infections [1]. Although modern
medicine is aligned with antibiotic treatment, the discovery
of new and potential drugs is declining, as there is an
increase of the misuse of the current available medicine,
causing a resistance effect to these kinds of agents. Addi-
tionally, a reduced financial investment makes it difficult
for researchers to keep up with the current population and
pharmaceutical needs [2].

Traditional de novo drug discovery is very time-
consuming, as it may take 10 to 17 years from concept to
marketed drug [3], expensive, in the realm of thousands
of millions, and it is associated with a low probability of
success, as there is a considerable number of conditions to
be met in order to be viable for human consumption. There-
fore, new approaches are needed in order to reach a better
time-reward trade-off. Aligning drug repositioning [4], that
is, finding new clinical purposes for existing drugs, with
computational methods is decisive to find potential drug-
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target interactions in a reasonable amount of time. As such,
establishing effective computational methods is crucial to
find new leads (hit compounds), which are identified as
potential drugs for therapeutic use.

Computational methods for DTI prediction are divided
into 3 main approaches [5]: ligand based, docking simula-
tion and chemogenomic.

1.1 Ligand Based
Ligand based approaches are built upon the concept that
similar molecules have similar properties and therefore
should bind to the same group of proteins. Keiser et
al. (2008) [6] developed a method, Similarity Ensemble
Approach (SEA), where receptors (proteins) were quanti-
tatively related based on the chemical similarity among
their ligands. Humberto et al. (2011) [7] proposed a Multi-
target QSAR (Quantitative Structure Activity Relationships)
Web Server to make large scale predictions derived from
chemical structures and 3D structures of target proteins.
Cheng et al. (2012) [8] established multi-target quantitative
structure–activity relationships (mt-QSAR) and chemoge-
nomics methods based on substructure patterns and protein
sequences descriptors to predict chemical–protein interac-
tions.

1.2 Docking Simulation
Docking Simulation approaches are used for structure based
drug design [9], where the interaction between a protein and
a drug is simulated and scored, according to the intermolec-
ular interaction energy, using 3D structures. Li et al. (2006)
[10] developed an useful tool for target identification, TarFis-
Dock, where a reverse ligand-protein docking is used to
identify potential protein targets for a small molecule. Yang
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et al. (2011) [11] established a docking method, Chemical-
Protein Interactome, to mimic the differences in the drug-
protein interactions across a set of human proteins. The
proposed work gives information about the binding confor-
mation and the binding strength. Additionally, it was able
to identify an important biomarker, HSPA1A, an off-target of
clozapine. Cheng et al. (2007) [12] designed a binding free
energy model combined with drug like properties to predict
the maximal affinity by a drug-like molecule (drugability)
using the crystal structure of the target binding site.

Although the use of 3D structures is a realistic approach
to model the interaction between proteins and drugs, the
lack of information, the complexity of 3D structures and
the amount of time it takes to simulate, makes this kind
of approaches inapplicable and inefficient in most cases.

1.3 Chemogenomic

The growth of available biological and chemical data useful
for prediction resulted in a higher usage of chemogenomic
methods over the traditional methods. Chemogenomic ap-
proaches are based on the chemical space of compounds,
genomic space of target proteins and/or the pharmacologi-
cal space (interactions between proteins and drugs) to pre-
dict new potential interactions. Yamanishi et al. (2008) [13]
proposed a supervised method to infer DTIs by integrating
the chemical space and genomic space into a unified space
defined as the pharmacological space. The proposed work
uses a bipartite graph learning method to learn the correla-
tion (similarity) between chemical/genomic space and the
interaction space to infer new possible interactions (high
scoring compound-protein pairs). Although the method
was not validated experimentally, the major four datasets
used in this work are still the base of many DTI studies.
Cheng et al. (2012) [14] proposed a network based inference
(NBI) approach using FDA (United States Food and Drug
Administration) approved drug-target binary links to infer
new predictions. This method only uses known drug-target
bipartite network topology similarity to calculate predictive
scores for each drug and unlinked target. Unlike Yamanishi
et al. (2008), some of the predictions were validated experi-
mentally by in vitro assays.

1.3.1 Machine Learning
Due to the considerable amount of available data, machine
learning approaches are pursued as a result of their ability
to learn relationships and patterns among the data related
to proteins and drugs. Cao et al. (2014) [15] combined chem-
ical data, MACCS (Molecular Access System) fingerprints
and/or substructure fingerprints, biological data, protein
descriptors, and network properties, presence or absence of
association, into feature vectors to be used in a predictive
random forest (RF) model, to identify new DTIs. Yu et
al. (2012) [16] proposed a machine learning method, using
random forest and support vector machine (SVM) as the
predictive models, to infer new interactions. In that work,
chemical and protein descriptors were combined to create
the feature vectors. Nagamine et al. (2007) [17] used sup-
port vector machine as the predictive model to infer new
interactions. Instead of using the conventional chemical and
genomic descriptors, protein sequences, chemical structures

and mass spectrometry, which generates information about
the structure and physicochemical properties, were encoded
into numerical values, based on the existence or frequency,
and concatenated into features vectors. Cobanoglu et al.
(2013) [18] presented a method using probabilistic matrix
factorization (PMF) combined with active learning, with-
out reliance on chemical/target similarity. This approach
decomposes the connectivity matrix, related to the DTI
network, as a product of 2 matrices that express each
drug/target, which objective is to determine the missing in-
teractions that are likely to exist. Yamanishi et al. (2009) [19]
proposed a supervised prediction method using bipartite
local models, one based on chemical structure similarity and
another one based on sequence similarity between proteins.
The prediction is done using two support vector machines to
predict target proteins and drugs for a given drug or protein,
respectively. The results are combined to give a definitive
prediction for each interaction.

1.3.2 Deep Learning
Even though traditional machine learning approaches usu-
ally result in good performance, with the increased compu-
tational power and amount of available data, deep learning
approaches are being used more often, resulting in even
higher performance in most cases, due to the fact that they
are able to identify hidden and complex patterns (represen-
tations) of the data without using any feature engineering.
Tian et al. (2016) [20] proposed a deep neural network ap-
proach, based on a feedforward architecture, DL-CPI (Deep
Learning for Compound-Protein Interactions prediction),
to predict compound-protein interactions, where chemical
fingerprints and protein domains were used as features.
Peng Wei et al. (2016) [21] developed an approach known
as multi-scale features deep representations inferring in-
teractions (MFDR), where a certain type of deep neural
network architecture, autoenconder, is used to extract low-
dimensional representations from chemical structure and
protein sequence descriptors to then be used as features in
a support vector machine. Wen et al. (2017) [22] proposed
a deep learning method, DeepDTIs, based on deep belief
networks (DBN). This type of neural network architecture
is made by stacking restricted Boltzmann machine (RBM),
which is a graphical model that can learn a probability
distribution from input data. The features used were ex-
tracted from chemical substructures and sequence order
information (descriptors). Xie et al.(2017) [23] used tran-
scriptome data, z-score of genome wide gene expressions,
in a deep feedforward neural network to predict new drug-
target interactions.

In this work we propose a deep learning approach to
predict the interaction between proteins and drugs using
1D raw data, protein amino acid sequences and SMILES
strings to represent the drug’s chemical structure. A pipeline
with two parallel Convolutional Neural Networks is used
to uncover deep patterns (representations or local depen-
dencies) from raw data instead of the conventional physic-
ochemical and/or structural descriptors, as they are general
descriptors of the whole sequence or chemical structure and
therefore being non relevant, in most cases, to a possible
real interaction, or 3D structures, as the amount of available
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known structures is limited or highly complex. Although
convolutional neural networks are known as the state-of-art
for image classification (LeCun et al. (2010) [24], Krizhevsky
et al. (2012) [25], Kang et al. (2014) [26], Üreten et al. (2019)
[27]), some of the most recent studies applied these specific
type of deep neural architectures to learn deep hidden
patterns from sequences or strings (Zeng et al. (2016) [28],
Ozturk et al. (2018) [29], Budach et al. (2018) [30], Kwon et
al. (2018) [31]). Furthermore, convolutional neural networks
have also been explored to extract useful information from
graph representations of the data [32], including 2D graph
representations of the molecules [33]. We use Coelho et al.
(2016) [34] DTI (Drug-Target Interaction) dataset to evalu-
ate the performance of our model and validate the whole
pipeline. Additionally, we compared our model with four
different approaches, specifically random forest, a fully con-
nected neural network architecture, support vector machine
and also a CNN, autoencoder and FCNN combined model.
The designed setup resulted in better performance overall.

2 METHODS

2.1 Dataset
2.1.1 Drug-Target Interaction Pairs
Coelho et al. (2016) [34] DTI dataset was used as benchmark.
Positive interaction dataset was obtained from DrugBank
[35] and Yamanishi et al. (2008) [13], where all entries
related to specific classes of protein targets and proteins
with unreviewed status were removed. On the other hand,
the negative interaction dataset was collected from BioLiP
[36] and BindingDB [37], where a bioactivity threshold of 10
µM was used to identify weak binding interactions. Table 1
summarizes the amount of unique drugs, targets and drug-
target interactions extracted from these databases.

TABLE 1: Unique drugs, targets and DTIs.

Positive Negative

DrugBank Yamanishi
et al. (2008) BioLip BindingDB

Drugs 1328 790 894 12454
Targets 706 1371 636 404

DTI 3530 7206 1223 14985

A ratio of 1.5 negative to positive was adopted, resulting
in 7206 positive and 10,912 negative DTI pairs for training
and 3,530 positive and 5,297 negative DTI pairs for testing
(Table 2). Plus, only Yamanishi et al. (2008) [13] and Drug-
Bank [35] positive entries were used for training and testing,
respectively.

TABLE 2: Training and Testing Datasets.

Positive Negative Total

Training 7206 10912 18118
Testing 3530 5297 8827

The reference work [34] ensured the discriminating
power by evaluating the sequence similarity within each
dataset and across all datasets and guaranteeing that less
than 1 % of all possible drug pairs had a sequence similarity
score greater than 0.85, excluding any possibility of redun-
dancy between the two datatsets, training and testing.

2.1.2 Protein Data

The protein sequences were all extracted from UniProt [38]
using their identifiers. Proteins are constituted by an unique
amino acid sequence, hence different proteins have different
sequence’s lengths. Since we are using protein sequences
directly and not global descriptors, each amino acid that
constituted the sequence is considered as a feature. Thus, it
was necessary to define a threshold based on their length, in
order to guarantee that each protein is characterized by the
same amount and type (order) of features.

Figures 1a and 1b show the protein sequence length
distribution for the training and testing set, respectively.
An information threshold of 95 % was used, resulting in
a maximum length of 1205 for the protein sequences. Every
protein sequence with a length superior or inferior to the
threshold was removed or padded, respectively.

2.1.3 Chemical Data

The SMILES strings were collected from PubChem [39] ex-
clusively, in their canonical format, to guarantee a consistent
notation to represent the chemical structure. Each character
of the SMILES string is considered as a feature, therefore if
different notations were to be used to represent the chemical
structures, equal segments of the compounds would be seen
as different components by the model.

The dataset contains IDs from Protein Data Bank (PDB)
[40], KEGG [41], ZINC [42] [43] and DrugBank [35], thus it
was necessary to convert them to PubChem [39] compound
IDs first in order to extract the SMILES strings. The Python
packages, PyPDB [44], BioServices [45] and PubChemPy
[46], were used for conversion and extraction.

Identical to the protein sequences, a threshold based on
their length was applied, resulting in a maximum length
of 90. Figures 1c and 1d show the SMILES string length
distribution for the training and testing set, respectively.

All entries duplicated or containing missing characters in
one of the datasets were also removed. Table 3 summarizes
the result of elimination and Table 4 the amount of unique
targets, drugs and number of targets for the training and
testing datasets, respectively, after elimination.

TABLE 3: Training and Testing Datasets after elimination.

Positive Negative Total

Training 5839 10172 16011
Testing 3012 4914 7926

TABLE 4: Unique targets, drugs and number of targets for
the training and testing datasets.

Unique Number of Targets

Targets Drugs 1 >1
Training 1790 9583 8026 1557
Testing 1068 5718 4884 834
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(a) (b)

(c) (d)

Fig. 1: Distribution of the lengths of training and testing datasets. (a) Training protein sequences. (b) Testing protein
sequences. (c) Training SMILES. (d) Testing SMILES.

2.2 Data Representation

2.2.1 Protein Sequence Encoding

We used Yu et al. (2010) [47] protein substitution table (Table
5), which organizes amino acids into 7 groups according
to their physicochemical properties. Each amino acid was
encoded into an integer based on the corresponding group.
This kind of representation allows to directly use protein
sequences, preserve the sequential information and also
reduce the amount of categories from 20, associated with
the number of possible amino acids, to 7.

TABLE 5: Yu et al. (2010) [47] Protein Substitution.

Groups Amino Acids

1 Ala, Gly, Val
2 Ile, Leu, Phe, Pro
3 Tyr, Met, Thr, Ser
4 His, Asn, Gln, Trp
5 Arg, Lys
6 Asp, Glu
7 Cys

2.2.2 SMILES String Encoding

A simple integer encoding, based on the number of different
characters, was used to transform each character of the
SMILES string into a integer. A dictionary containing 32
categories (number of different characters) was established

(Table 6). This representations preserves the structural infor-
mation and has a low computational cost given the amount
of different characters.

TABLE 6: SMILES Char-Integer Dictionary.

Integer Character

1 I
... ...
7 [
... ...
25 P
... ...
32 g

2.3 Model Overview

The proposed approach is based on the combination of two
deep neural network architectures, Convolutional Neural
Network and Fully Connected Neural Network, constitut-
ing a deep learning model to predict the interaction, positive
or negative, between targets (proteins) and compounds
(drugs), directly using 1D raw data, protein amino acid
sequences and SMILES strings.

Protein sequences and SMILES strings are initially pro-
cessed based on the length, as mentioned in Section 2.1.2
and 2.1.3, and then encoded into integer values according to
the encoding scheme, Section 2.2.1 and 2.2.2, respectively.
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These integers values are still recognized as categorical
variables, therefore an one-hot encoding layer was applied
to normalize the importance of each categorical value, since
higher categorical values would have more influence than
the others in the training process, leading to possible errors
and misclassifications by the model. One-Hot Layer assigns
a binary variable for each unique integer value, converting
every integer into a binary vector, which sets the corre-
sponding integer to ”1” and ”0” to the rest. In particular,
this is illustrated in Figure 2 with respect to myocyte-specific
enhancer factor 2B (protein).

Fig. 2: One-Hot encoding applied to myocyte-specific en-
hancer factor 2B.

CNNs are known as motif detectors and feature extrac-
tors, capable of identifying deep patterns from the data
by moving from low level features to abstract concepts.
The convolutional layer is composed by filters, which are
identified as arrays of weights that slide over the entire
input. These filters work as feature identifiers and convo-
lute at each particular location, originating activation maps,
which are learnable feature maps composed by all the single
convolution outputs and used as the input of the next
layer. Convolution is a specialized kind of linear operation,
described as an element-by-element multiplication between
a particular location of the input (matrix) and the filter,
followed by the sum of the results. Similar to the traditional
neural networks, an activation function is applied to every
value of the feature maps.

Two parallel series of 1D convolutional layers were used,
one for the protein sequences and another for the SMILES
strings, to uncover deep patterns (representations or local
dependencies). A global max pooling layer was applied,
after each series of convolutional layers, to reduce the spatial
size of each feature map to its maximum representative fea-
ture. The obtained deep representations were concatenated
into a single feature vector, characterizing a DTI pair.

The resulting features vectors were then used as the
input of a FCNN architecture. This type of neural network
is similar to the traditional neural networks, where all the
neurons are interlinked and the output is the result of the
weighted sum of all the outputs given by the previous
connected neurons and to which an activation function is
applied. Dropout was applied between each fully connected
layer to reduce the overfitting. Deep neural network archi-
tectures have many non-linear hidden layers, therefore there
are many complex relationships to be learned between in-
puts and outputs, which can lead to training noise. Dropout
is seen as a regularization strategy, which helps reducing
learning inter-dependency and improve the generalization
of the model. It works by deactivating a given percentage of
neuron which develop co-dependency amongst each other
during training.

This architecture was followed by an output layer, which
is essentially composed by one neuron that returns the
type of interaction, 0 or 1, as it is a binary classification
problem, classifying the interaction as negative or positive,
respectively.

The proposed end-to-end deep learning approach to
predict DTIs is illustrated in Figure 4.

2.4 Hyperparameter Optimization Approach
The most common approach to determine the best model
architecture and set of parameters is grid search with cross-
validation, where the dataset is divided into training to train
the model, validation to evaluate the model architecture
and parameters and testing to evaluate the performance
and generalization of the model. However, another strategy
was applied for hyperparameter optimization (Figure 3) due
to the fact that dividing the training set into training and
validation led to high scores for every model architecture
and set of parameters in both training and validation.
Therefore, it was not possible to select the best model using
this approach, as every model was supposedly good in the
validation set but the results were inconsistent when applied
to the testing set.

Fig. 3: Hyperparameter optimization model based on grid
search.

Two simultaneous methods, combined with grid search
were used to determine the best model, early stopping and
model checkpoint. Early stopping allows to interrupt the
training process if, after a chosen number of epochs, there
is no improvement of the evaluation metric. On the other
hand, model checkpoint saves the best model, including
the parameters, for that training run, independently of the
finishing epoch.

Considering that splitting the training set into training
and validation was not relevant for the discovery of the best
model, we used the whole training set for training and the
testing set to evaluate the model performance at each epoch.
Since the testing set is highly imbalanced, F1-score, which
is an harmonic mean that considers both the precision and
recall and therefore an overall goodness of the classification,
was used for this evaluation.
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Fig. 4: Drug-Target Interaction Model Architecture.

3 EXPERIMENTAL SETUP

We propose a deep neural network architecture to predict
the interaction between drugs and targets based on protein
sequences and SMILES strings. Conversely to the reference
work, which performs grid search applying 5-fold cross-
validation, we used the testing set to evaluate the model
performance, based on F1-score, in each epoch, as it was
explained in Section 2.4, to find the best model and set
of parameters. Although the model has several parameters
possible to hyperoptimize, we only selected six: number of
filters for proteins and compounds, filter length for proteins,
filter length for compounds, number of neurons for each
dense layer, dropout rate and optimizer learning rate. A
wide range of possible values was given for each hyperpa-
rameter and the number of convolutional layers and dense
layers was fixed at three.

Rectified Linear Unit (ReLU) was selected as the activa-
tion function for each convolutional and dense layers. This
function is normally used in deep learning architectures [48]
and returns zero if it receives any negative input or the value
itself if any positive input.

f(x) = max(0, x) (1)

Loss functions are used to measure the inconsistency
between predicted and real values and therefore play an
important role in any classification problem. Binary cross
entropy was selected as the loss function and measures the
divergence between two probability distributions, in which
y is the label and p(y) is the predicted probability:

L(θ) = − 1

n

n∑
i=1

[yilog(pi) + (1− yi)log(1− pi)] (2)

Adam (Adaptive Moment Estimation) [49], known as an
extension to stochastic gradient descent, was used as the
optimization algorithm and it is responsible to update the
network weights in each iteration of the training process.
Considering that this is a binary classification task, sigmoid
function was used in the output layer.

S(x) =
1

1 + e−x
(3)

Additionally, taking in account the existing class imbal-
ance of the training set (64% and 36 % for the negative

and positive class, respectively) we decided to switch class
weights, giving special attention to the positive class, as the
primary focus is around positive interactions.

Table 7 summarizes the hyperparameters obtained from
grid search.

TABLE 7: Parameter settings for the proposed model.* Ini-
tial number of epochs to allow convergence of the model,
however early stopping and model checkpoint were used.

Parameters Value

Number of Convolutional Layers 3
Number of Dense Layers (FC) 3
Number of Filters [128, 256, 384]
Filter Length (Proteins) [3,4,5]
Filter Length (Compounds) [3,4,5]
Epochs* 500
Hidden Neurons [128,128,128]
Batch Size 256
Dropout Rate 0.5
Optimizer Adam
Learning Rate 0.0001
Loss Function Binary Cross Entropy
Activation Function (CNN) ReLU
Activation Function (FC) ReLU
Activation Function Output) Sigmoid
Class Weights (imbalanced classes) {0: 0.36, 1: 0.64}

We compared our proposed model performance with
random forest approach, a fully connected neural network
architecture, a support vector machine approach and also a
CNN, autoencoder and FCNN combined model.

We used Python 3.6.6 and Keras [50] with Tensorflow
[51] back-end to develop our proposed model. Our exper-
iments were run on 2.20GHz Intel i7-8750H and GeForce
GTX 1060 6GB.

3.1 Random Forest (RF)

Coelho et al. (2016) [34] uses a random forest approach,
which is an ensemble learning method that generates a
chosen number of decision trees and returns the class that is
the mode of the classes across the output of each individual
decision tree, to make predictions on drug-target interac-
tions. The parameters used in the random forest model, 150
n estimators and 100 max features, were the same as the
original work. Scikit-learn [52] was used to implement the
random forest method.
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Additionally, we decided to use both Coelho et al. (2016)
[34] descriptors and protein and SMILES deep representa-
tions extracted from the proposed setup, to evaluate the
performance of this approach.

3.2 Fully Connected Neural Network (FCNN)
The proposed approach already uses a FCNN as a binary
classifier, however we decided to evaluate the performance
of this method using descriptors. The parameters setting
for the architecture were obtained by grid search using
the hyperparameter optimization approach mentioned in
Section 2.4. Table 8 summarizes the parameter settings for
this architecture.

TABLE 8: Parameter settings for the FCNN model using
descriptors as input. *Initial number of epochs to allow
convergence of the model, however early stopping and
model checkpoint were used.

Parameters Value

Number of Dense Layers (FC) 3
Epochs* 500
Hidden Neurons [128,1024,256]
Batch Size 256
Dropout Rate 0.2
Optimizer Adam
Learning Rate 0.001
Loss Function Binary Cross Entropy
Activation Function (FC) ReLU
Activation Function (Output) Sigmoid
Class Weights (imbalanced classes) {0: 0.36, 1: 0.64}

3.3 Support Vector Machine (SVM)
Support vector machine defines a hyperplane that maxi-
mizes the separation margin between different classes and
gives a penalty term for misclassifications. In the case of
non-linearly separable problems, it maps data to high di-
mensional spaces, using kernels, where it is possible to
classify with linear decision surfaces. Scikit-learn [52] was
used to implement this classifier.

To define the hyper-parameters, namely penalty pa-
rameter C, kernel and/or degree (poly kernel), for this
model, grid search with 5-fold stratified cross-validation
was applied. Contrarily to k-fold cross-validation, stratified
ensures that each fold contains roughly the same proportion
of each class. Thus, the parameters used were C=1.0 and
radial basis function (RBF) kernel.

Similar to the random forest approach, we used both
descriptors and protein and SMILES deep representations
to evaluate the performance.

3.4 CNN, Autoencoder and FCNN Combined Model
In order to determine the influence of specific descriptors
to the overall prediction of DTIs, we decided to evaluate
our setup with a model based on Convolution Neural
Networks, Autoenconders and Fully Connected Neural Net-
works. (Figure 5).

Identical to the proposed model, we used two parallel
convolutional neural networks to extract deep representa-
tions from protein sequences and SMILES strings, where the
pre-trained proposed setup was used for this purpose.

Autoencoders are a specific type of neural network ar-
chitecture, where the learning process is done in an unsu-
pervised manner. The main objective of this architecture is
to compress data (dimensionality reduction combined with
some data ”denoising”) and uncompress into something
that closely matches the original data. Hence, it allows to
extract a smaller set of features that represent the input data
[53].

We decided to apply an autoencoder on a particular
group of descriptors, namely CTD (Composition, Transi-
tion and Distribution) descriptors for proteins and charge,
molecular property and molecular connectivity descrip-
tors for compounds. The CTD descriptors represent sev-
eral structural and physicochemical properties, specifically
hydrophobicity, polarity, charge, polarizability, normalized
van der Waals volume, secondary structures and solvent
accessibility. On the other hand, charge descriptors express
electronic features and molecular property and connectivity
descriptors represent a handful of physicochemical proper-
ties. The main reason behind the choice of these descriptors
was that they represent specific and intrinsic properties of
the proteins and compounds. The Python package PyDPI
[54] was used to extract all the descriptors, resulting in
a total of 147 CTD (21 Composition, 21 Transition and
105 Distribution) descriptors, 44 molecular connectivity de-
scriptors, 25 charge descriptors and 6 molecular property
descriptors.

Our model uses a stack of dense layers, three for encod-
ing and decoding, respectively. We applied early stopping
and model checkpoint based on the loss value to find
the best set of weights for the network. This resulted in
a dimensionally reduction of 222 descriptors to 32 deep
representations. Keras [50] with Tensorflow [51] back-end
was used to built this architecture. Table 9 summarizes the
parameter settings for the autoencoder model.

TABLE 9: Parameter settings for the autoencoder model.
* Initial number of epochs, yet early stopping and model
checkpoint were applied.

Parameters Value

Number of Encoding Dense Layers 3
Number of Decoding Dense Layers 3
Encoding Hidden Neurons [128, 64, 32]
Decoding Hidden Neurons [64,128,222]
Epochs* 500
Batch Size 256
Optimizer Adam
Learning Rate 0.0001
Loss Function Mean Squared Error
Activation Function ReLU
Activation Function (Output) Sigmoid

The obtained features from the two pre-trained models
were concatenated into a single feature vector and used
as the input of a fully connected neural network. Grid
search based on the hyperparameter optimization approach
of Section 2.4 was performed. Table 10 summarizes the
parameter settings for the fully connected neural network
architecture.
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Fig. 5: CNN, Autoencoder and FCNN Combined Model.

TABLE 10: Parameter settings for the fully connected neural
network. * Initial number of epochs, however early stopping
and model checkpoint were applied.

Parameters Value

Number of Dense Layers (FC) 3
Epochs* 500
Hidden Neurons [512,256,1024]
Batch Size 256
Dropout Rate 0.2
Optimizer Adam
Learning Rate 0.001
Loss Function Binary Cross Entropy
Activation Function (FC) ReLU
Activation Function Output) Sigmoid
Class Weights (imbalanced classes) {0: 0.36, 1: 0.64}

4 RESULTS

4.1 Evaluation Metrics
For performance comparison, we use the following evalua-
tion metrics:

1) Accuracy: rate of predictions correctly classified.

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

2) Sensitivity: rate of positives correctly classified.

Sensitivity =
TP

TP + FN
(5)

3) Specificity: rate of negatives correctly classified.

Specificity =
TN

TN + FP
(6)

4) F1-Score: harmonic mean between precision and
recall.

F1− Score = 2 ∗ precision ∗ recall
precision+ recall

(7)

5) Area Under Receiver Operating Characteristic
Curve (AUROC): measure of the trade-off between
the TP rate and FP rate.

6) Area Under Precision-Recall Curve (AUPRC): mea-
sure of the trade-off between the precision and
recall.

7) Confusion Matrix: two-dimensional table that al-
lows visualization of the performance of the algo-
rithm.

TP: True Positive, TN: True Negative, FP: False Positive, FN:
False Negative

4.2 Discussion

In the context of drug repositioning and finding new leads,
identifying correctly positive interactions should be the
central focus, as negative interactions are not normally regis-
tered and therefore based on possible hypotheses or absence
of information. The differences in performance between
all models can be interpreted as a result of the difference
between using deep representations, obtained using protein
sequences and SMILES strings, and global descriptors. Be-
sides, it is also possible to highlight the difference between
applying traditional machine learning and deep learning
approaches. We applied grid search for all the models in
order to accurately compare and evaluate the performance.
Table 11 shows the overall experimental results in terms of
seven metrics, including the mean and standard deviation
for a total of 30 runs. Supplementary Material contains the
predictions results of testing set for all the 30 runs for each
model.

Our approach is based on the concept of using an end-
to-end deep learning process, capable of extracting deep
representations from data and then use them as input of
another deep learning architecture. We used two parallel
convolutional neural networks to extract deep represen-
tations from protein sequences and SMILES strings and
then fed them into a fully connected neural network. The
results obtained validate the effectiveness of convolutional
neural networks as feature extractors and their capacity
to automatically surmise and identify important sequen-
tial and structural regions for drug-target interactions, as
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TABLE 11: Prediction Results of Testing Set.

Model

CNN+FCNN CNN+Autoencoder+FCNN FCNN Random Forest SVM RBF

CNN Representations CNN+Descriptors Representations Descriptors Descriptors CNN Representations Descriptors CNN Representations

M
et

ri
c

Sensitivity 0.861 (0.841,0.011) 0.880 (0.844,0.013) 0.827 (0.800,0.015) 0.819 (0.816,0.003) 0.833 (0.827,0.003) 0.720 (0.720,0.000) 0.765 (0.765,0.000)
Specificity 0.961 (0.971,0.007) 0.948 (0.972,0.008) 0.963 (0.963,0.010) 0.989 (0.989,0.001) 0.992 (0.992,0.000) 0.983 (0.983,0.000) 0.993 (0.993,0.000)
F1-Score 0.895 (0.890,0.003) 0.896 (0.893,0.002) 0.876 (0.860,0.006) 0.892 (0.890,0.002) 0.902 (0.899,0.002) 0.824 (0.824,0.000) 0.861 (0.861,0.000)
Accuracy 0.923 (0.921,0.002) 0.922 (0.923,0.001) 0.911 (0.901,0.004) 0.925 (0.923,0.001) 0.931 (0.929,0.001) 0.883 (0.883,0.000) 0.906 (0.906,0.000)
AUROC 0.966 (0.969,0.004) 0.972 (0.964,0.003) 0.955 (0.940,0.010) 0.988 (0.987,0.000) 0.988 (0.988,0.000) 0.915 (0.915,0.000) 0.965 (0.965,0.000)
AUPRC 0.960 (0.960,0.003) 0.966 (0.958,0.003) 0.949 (0.933,0.008) 0.982 (0.982,0.001) 0.983 (0.983,0.001) 0.918 (0.918,0.000) 0.958 (0.958,0.000)
Inference Time (s) 5.024 0.453 0.419 0.137 0.108 18.198 9.089

Note: The mean and standard deviation for a total of 30 runs are given in parenthesis.

they outperform completely the results achieved using a
fully connected neural network with global descriptors. An-
other observation is that using an end-to-end deep learning
method resulted in a high sensitivity (0.861) and specificity
(0.961) when compared to the other models, which obtained
a high specificity and a low sensitivity, with the exception
of the CNN, autoencoder and FCNN combined model that
resulted in a high sensitivity (0.880) and a low specificity
(0.948). Being the testing set imbalanced, 62% negatives and
38% positives, our approach exceeds other models in its
capability to correctly classify both positive and negative
drug-target interactions. Thus, it is possible to conclude
that our model achieved better results than the one used
in reference work. The confusion matrix is shown in Figure
6.

Fig. 6: Confusion matrix of testing set classification for the
proposed model.

Random forest method evidences that using deep rep-
resentations outperforms conventional global descriptors in
every evaluation metric. Additionally, this is also manifested
when using a support vector machine. The results indicate
that protein and compound representations learned from
sequential information with convolutional neural networks
are more discriminating for classification than global de-
scriptors. Furthermore, these representations are extracted
from sequential raw data, hence the CNNs are automatically
learning which sequential regions are relevant for a drug-
target interaction. Conversely, conventional descriptors are
general information about the whole sequence or structure
and not specific to the binding regions. Lastly, random forest
surpasses support vector machine in both configurations,

which is in agreement to the notion that this method usually
runs adequately on large datasets and is less susceptible to
overfitting.

The model based on a fully connected neural network
architecture with conventional descriptors as input, shows
that deep learning in its essence is not enough to completely
outperform traditional machine learning approaches. This is
illustrated when comparing the evaluation metrics, which
are higher, specifically the sensitivity (0.827), F1-score (0.876)
and accuracy (0.911), than the support vector machine ap-
proach but overall lower than random forest method in
both configurations, respectively. Moreover, it highlights
the inefficiency of using global descriptors over deep rep-
resentations extracted from CNNs. Inevitably, the quality
and discriminatory power of the input data have a great
influence in the performance achieved.

Although the efficiency of using CNNs to extract deep
representations over global descriptors is verified, we de-
cided to evaluate the influence of specific descriptors en-
coded as deep representations by an autoencoder combined
with proteins and SMILES deep representations. The re-
sults demonstrate that using additional information may be
useful to correctly identify positive interactions, which is
verified by achieving the highest sensitivity (0.880). How-
ever, it has the lowest specificity of all models (0.948),
meaning it has more difficulty to accurately classify negative
(non existing) interactions. Nonetheless, the majority of the
input is obtained from the CNN model, 768 protein and
SMILES deep representations and 32 descriptors deep rep-
resentations, which proves again the capability of this deep
feature extractor model. Moreover, it reinforces the fact that
using end-to-end deep learning approaches result in better
performance overall.

5 CONCLUSION

In this paper we proposed an end-to-end deep learning
approach for drug-target interaction prediction, capable of
automatically feature (deep representations) extraction from
sequential raw data, protein sequences and SMILES strings,
using two parallel convolution neural networks. We com-
pared the performance of this model with traditional ma-
chine learning methods, random forest and support vector
machine, using both descriptors and deep representations,
a deep learning approach based on a fully connected neural
network with global descriptors as the input and also a
convolution neural network, autoencoder and fully con-
nected neural network combined model, that uses as input
a combination of deep sequential representations obtained
from the CNNs and deep descriptors representations from
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the autoencoder. Our approach yielded better results in the
correct classification of both positive and negative interac-
tions, demonstrating its viability for practical use.

Deep learning has shown an overwhelming success in
many classification studies for its capacity to learn deep hid-
den patterns from the data. Additionally, our model illus-
trates the remarkable ability of applying these approaches,
specifically convolution neural networks, to automatically
extract deep representations, identified as local patterns or
dependencies, and use them to describe drug-target inter-
actions. The results obtained showed that using these rep-
resentations outperformed completely global descriptors in
every model applied, proving the importance and relevance
of the features extracted and also the capacity to identify and
learn particular sequential regions meaningful to the inter-
action. Nonetheless, deep learning does not always surpass
traditional machine learning approaches, as demonstrated
when comparing the FCNN model and random forest.

In addition, we also evaluated the influence of particular
descriptors, encoded into deep representations, combined
with sequential deep representations extracted from protein
sequences and SMILES strings. The results demonstrated
that additional information may prove to be useful to cor-
rectly identify positive interactions, as this model obtained
the highest sensitivity (0.880). On that account, as future
work we will focus on building an effective ensemble of
meaningful information for interaction that will further be
integrated in our end-to-end deep learning model.
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J. Sansano, and F. M. Ubeira, “MIND-BEST: Web server for
drugs and target discovery; design, synthesis, and assay of
MAO-B inhibitors and theoretical-experimental study of G3PDH
protein from trichomonas gallinae,” Journal of Proteome Research,
vol. 10, no. 4, pp. 1698–1718, Apr 2011. [Online]. Available:
https://doi.org/10.1021/pr101009e

[8] F. Cheng, Y. Zhou, J. Li, W. Li, G. Liu, and Y. Tang,
“Prediction of chemical-protein interactions: multitarget-QSAR
versus computational chemogenomic methods,” Molecular
BioSystems, vol. 8, no. 9, pp. 2373–2384, 2012. [Online].
Available: http://dx.doi.org/10.1039/C2MB25110H
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M. Blay, J.-B. Fernandez-Larrea, and L. Arola, Protein-ligand
Docking: A Review of Recent Advances and Future Perspectives, ser.
Current Pharmaceutical Analysis, Feb 2008, vol. 4. [Online].
Available: http://doi.org/10.2174/157341208783497597

[10] H. Zhang, H. Li, H. Jiang, J. Shen, K. Chen, K. Yang, K. Yu,
L. Kang, W. Zhu, X. Luo, X. Wang, and Z. Gao, “TarFisDock: a
web server for identifying drug targets with docking approach,”
Nucleic Acids Research, vol. 34, no. suppl 2, pp. W219–W224, Jul
2006. [Online]. Available: https://dx.doi.org/10.1093/nar/gkl114

[11] L. Yang, K. Wang, J. Chen, A. G. Jegga, H. Luo, L. Shi, C. Wan,
X. Guo, S. Qin, G. He, G. Feng, and L. He, “Exploring off-targets
and off-systems for adverse drug reactions via chemical-protein
interactome – clozapine-induced agranulocytosis as a case study,”
PLOS Computational Biology, vol. 7, no. 3, p. e1002016, Mar 2011.
[Online]. Available: https://doi.org/10.1371/journal.pcbi.1002016

[12] A. C. Cheng, R. G. Coleman, K. T. Smyth, Q. Cao, P. Soulard,
D. R. Caffrey, A. C. Salzberg, and E. S. Huang, “Structure-based
maximal affinity model predicts small-molecule druggability,”
Nature Biotechnology, vol. 25, pp. 71 EP –, Jan 2007. [Online].
Available: https://doi.org/10.1038/nbt1273

[13] A. Gutteridge, M. Araki, M. Kanehisa, W. Honda, and
Y. Yamanishi, “Prediction of drug-target interaction networks
from the integration of chemical and genomic spaces,”
Bioinformatics, vol. 24, no. 13, pp. i232–i240, Jul 2008. [Online].
Available: https://dx.doi.org/10.1093/bioinformatics/btn162

[14] F. Cheng, C. Liu, J. Jiang, W. Lu, W. Li, G. Liu, W. Zhou, J. Huang,
and Y. Tang, “Prediction of drug-target interactions and drug
repositioning via network-based inference,” PLOS Computational
Biology, vol. 8, no. 5, p. e1002503, May 2012. [Online]. Available:
https://doi.org/10.1371/journal.pcbi.1002503

[15] D.-S. Cao, L.-X. Zhang, G.-S. Tan, Z. Xiang, W. Zeng,
Q. Xu, and A. Chen, Computational Prediction of DrugTarget
Interactions Using Chemical, Biological, and Network Features, ser.
Molecular Informatics, Oct 2014, vol. 33. [Online]. Available:
https://doi.org/10.1002/minf.201400009

[16] H. Yu, J. Chen, X. Xu, Y. Li, H. Zhao, Y. Fang, X. Li, W. Zhou,
W. Wang, and Y. Wang, “A systematic prediction of multiple drug-
target interactions from chemical, genomic, and pharmacological
data,” PLOS ONE, vol. 7, no. 5, p. e37608, May 2012. [Online].
Available: https://doi.org/10.1371/journal.pone.0037608

[17] N. Nagamine and Y. Sakakibara, “Statistical prediction of
protein-chemical interactions based on chemical structure
and mass spectrometry data,” Bioinformatics, vol. 23,
no. 15, pp. 2004–2012, May 2007. [Online]. Available:
https://dx.doi.org/10.1093/bioinformatics/btm266

[18] M. C. Cobanoglu, C. Liu, F. Hu, Z. N. Oltvai, and
I. Bahar, “Predicting drug-target interactions using probabilistic
matrix factorization,” Journal of Chemical Information and Modeling,
vol. 53, no. 12, pp. 3399–3409, Dec 2013. [Online]. Available:
https://doi.org/10.1021/ci400219z

[19] K. Bleakley and Y. Yamanishi, “Supervised prediction of drug-
target interactions using bipartite local models,” Bioinformatics,
vol. 25, no. 18, pp. 2397–2403, Jul 2009. [Online]. Available:
https://dx.doi.org/10.1093/bioinformatics/btp433

[20] K. Tian, M. Shao, Y. Wang, J. Guan, and S. Zhou, “Boosting
compound-protein interaction prediction by deep learning,”
Methods, vol. 110, pp. 64–72, 2016. [Online]. Available:
https://doi.org/10.1016/j.ymeth.2016.06.024



IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 11

[21] Peng-Wei, K. Chan, and Z.-H. You, Large-scale prediction of
drug-target interactions from deep representations, Jul 2016. [Online].
Available: https://doi.org/10.1109/IJCNN.2016.7727339

[22] M. Wen, Z. Zhang, S. Niu, H. Sha, R. Yang,
Y. Yun, and H. Lu, “Deep-learning-based drug-target
interaction prediction,” Journal of Proteome Research, vol. 16,
no. 4, pp. 1401–1409, Apr 2017. [Online]. Available:
https://doi.org/10.1021/acs.jproteome.6b00618

[23] L. Xie, S. He, X. Song, X. Bo, and Z. Zhang, “Deep learning-
based transcriptome data classification for drug-target interaction
prediction,” BMC Genomics, vol. 19, no. 7, p. 667, 2018. [Online].
Available: https://doi.org/10.1186/s12864-018-5031-0

[24] Y. Lecun, K. Kavukcuoglu, and C. Farabet, Convolutional
Networks and Applications in Vision, ser. ISCAS 2010 - 2010 IEEE
International Symposium on Circuits and Systems: Nano-Bio
Circuit Fabrics and Systems, May 2010. [Online]. Available:
https://doi.org/10.1109/ISCAS.2010.5537907

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet
Classification with Deep Convolutional Neural Networks, ser. Neural
Information Processing Systems, Jan 2012, vol. 25. [Online].
Available: https://doi.org/10.1145/3065386

[26] L. Kang, P. Ye, Y. Li, and D. Doermann, Convolutional Neural
Networks for No-Reference Image Quality Assessment, Jun 2014.
[Online]. Available: https://doi.org/10.1109/CVPR.2014.224
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