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Abstract. Machine learning has been increasingly applied with suc-
cess in generating synthetically reasonable molecules. However, a com-
plete system capable of both producing valid molecules and optimizing
multiple traits has remained elusive. This paper employs multiobjective
reinforcement learning to draw a framework to design compounds. Differ-
ent multiobjective techniques have been evaluated, such as weighted sum
and Chebyshev. The results show that the implemented model can be ef-
fectively optimized towards different and competing molecular properties.
Nonetheless, the model implemented with the weighted sum scalarization
technique with a weight of 0.55 for biological affinity is the one with the
most appropriate trade-off for the different evaluated properties.

1 Introduction
The design of molecules with optimized key properties is fundamental in

drug discovery. It is a multi-disciplinary and time-consuming process involv-
ing sophisticated methodologies and a high financial risk [1]. Nonetheless, as
new diseases arise or new efficient ways of treatment for the exploration of ex-
isting conditions, it becomes more obvious that a reliable and efficient drug
discovery pipeline is needed. The first step in this pipeline is to identify drug
candidate molecules, lead compounds, which are the starting point whose design
requires further structural optimization to improve the potency, selectivity, or
pharmacokinetics. Lead compounds design is inherently a multiobjective prob-
lem where we have several objectives to satisfy. It is necessary to develop drugs
that optimize the physicochemical properties such as absorption, distribution,
metabolism, excretion, and toxicity. Besides, the candidate drugs should be
valuable towards pharmacological properties, such as efficacy and target selec-
tivity [2]. Therefore, by taking advantage of the potential of Machine Learning
(ML) and multiobjective optimization algorithms, it is desirable to utilize the
enormous datasets of chemical compounds and perform an efficient exploration
toward the desirable properties for novel drug candidates [3].

Among the more successfully implemented methods that use the multiob-
jective technique without the use of machine learning, we highlight the work
of Nicolau et al. [4]. The author combines evolutionary algorithms with local
search techniques to generate molecules using a graph-based model. A widely
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Fig. 1: The general framework for generation of multiple optimized molecular property.

used machine learning method is the variational autoencoder. It involves map-
ping molecules to a latent space in which the desired optimization is carried out,
and, finally, the compounds are remapped again to the molecular space. In this
type of approach, molecules are generally managed in string notation, SMILES
format [5, 6]. Models based on the same principle but using graph representa-
tions of molecules have also been constructed, such as the work of [7]. Another
strategy widely used for the de-novo generation of molecules is to define the
problem through inverse design. The desired properties for the molecules are
indicated a priori, and then, using virtual screening or Reinforcement Learning
(RL), the compounds that satisfy these preferences are identified [8]. In this
regard, Popova et al. [9], and Olivecrona et al. [10] built solutions using RL and
artificial neural networks to guide a SMILES-based molecular generator through
biologically promising chemical spaces. Also, Zhou et al. [11] combined RL with
chemistry domain knowledge to build a multiobjective generator model from
scratch that can produce molecules in compliance with chemical rules. Li et al.
[7] implemented a graph-based generator to satisfy structural, physicochemical,
and biological objectives simultaneously.

In this paper, we use a Recurrent Neural Network (RNN) architecture to con-
struct a Generator that generates valid compounds from SMILES strings. The
model was then retrained using Multiobjective RL (MORL) to find molecules
with optimized drug-like properties. Figure 1 shows the general framework of
this work. In MORL, the reward comes in the form of a vector where each ele-
ment corresponds to an objective (molecular property). Therefore after gener-
ating the compounds, the vectors corresponding to distinct molecular properties
are calculated. The MORL is based on the scalarization function that can be
either a linear combination weighted sum [12], or nonlinear (Chebyshev scalariza-
tion) [13]. This method allows the accurate analysis of the Pareto front solutions,
as it produces several non-dominated compounds simultaneously, which provides
valuable information about trade-offs among the objectives at a low computa-
tional cost. The novelty introduced in this work is the strategies that guarantee
that the molecules contain fundamental characteristics to be lead compounds,
including the implementation of different multiobjective optimization methods.

2 Methods
2.1 Reinforcement Learning

Reinforcement learning is based on the formal framework of the Markov
decision problems (MDP). RL is regarding how a number of actions should
be performed by decision makers (or agents) in a specified context in order to

336

ESANN 2021 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Online event, 6-8 October 2021, i6doc.com publ., ISBN 978287587082-7. 
Available from http://www.i6doc.com/en/.  



maximize the notion of cumulative reward. Here, the environment is the design
of the molecule, and the goal is to find a policy π which selects an action for
each state that can maximize the future rewards. Intuitively, we are trying to fit
a function Q(s, a) that predicts the future rewards of taking an action a on state
s. A decision is made by choosing the action a that maximizes the Q function,
which leads to larger future rewards. Mathematically, for a policy π, we can
define the value of an action a on a state s to be

Qπ(s, a) = Qπ(m, t, a) = Eπ

[
T∑
i=t

ri

]
where Q denotes taking an expectation with respect to π, and ri denotes the
reward at step i. This action-value function calculates the future rewards of
taking action a on state s, and subsequent actions decided by policy π. Thus,
we can define the optimal policy as π∗(s) = argmaxaQ

π∗
(s, a).

2.2 Multiobjective Reinforcement Learning
In the context of multi-objective reinforcement learning, the environment will

return a vector of rewards at each time step t, with one reward for each objective,
i.e. ~rt = [r1,t, . . . , rk,t]

T ∈ Rk where k is the number of objectives. There exist
various goals in multiobjective optimization. The aim may be to find a set of
Pareto optimal solutions, or locate a single or multiple solutions that satisfy a
decision maker’s preference. In this article, we adapted the latter. Especially, to
achieve multi-objective optimization, we used the scalarized reward framework,
with the introduction of a user defined weight vector w = [w1, w2, . . . , wk]T ∈ Rk.

After that, the scalarized reward can be computed by rs,t = wT ~rt =
∑k
i=1 wiri,t.

Consequently, the objective of the MDP is to maximize the cumulative scalar-
ized reward. To address this task, two types of scalarization strategies were ex-
plored to find a representative number of solutions that approximate the Pareto
front. First, we applied a Linear Weighted Sum(LWS) with a uniform weights
sampling. Second, a non-linear method was implemented to transform the vector
of rewards into a scalar number called Chebyshev scalarization (Chev). Never-
theless, a common normalization approach was adopted in the strategies so that
both objectives had the same relative importance a priori. This means that, for
each generated molecule, after the reward assignment for each property, both
values were normalized between 0 and 1. Therefore, it was guaranteed that both
rewards were in the same range of values before scalarizing. Otherwise, it would
not be easy to compare the two objectives having different ranges. Even so, to
evaluate the models, the evolution of the scaled reward as well as the individual
rewards were analyzed to prevent situations in which just one of the objectives
is optimized, increasing the combined scaled reward in such a way that it gives
the illusion that the model is contemplating the two goals when, in fact, only
one of them is appropriately evolving.

3 Experimental Analysis and Results
This framework consists of two independently pre-trained models: the molecule

generator and a biological affinity predictor for the target Adenosine A2A. A
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(a) Linear Weighted Sum (b) Chebyshev

Fig. 2: Dominated and non-dominated solutions obtained by scalarization technique

dataset of 500,000 drug-like molecules extracted from ChEMBL was used to train
the recurrent neural network generator [14]. The predictor model was trained
following the procedure described in the work of Popova et al., employing 4,872
compounds and their respective biological affinities for the target (ChEMBL
identifier: CHEMBL251) [9]. Moreover, the demonstration of the framework’s
ability to generate molecules considering several properties was performed by
optimizing the biological affinity for the target Adenosine A2A and lipophilicity
through the partition coefficient. The biological affinity was measured in terms
of pIC50, and the higher this value, the greater the probability of the molecule
to inhibit the desired target. Regarding the partition coefficient, the parameter
employed was the ratio at the equilibrium of the concentration between octanol
and water (logP). In this case, the RDKit tool was used to conduct its calcula-
tion [15]. This parameter influences the lipophilicity of the compounds, which
is fundamental for the bioavailability of the candidate drugs to permeate the
blood-brain barrier that protects the brain. According to Lipinski’s rule of five,
druglike molecules must have the logP between 1 and 4 [9]. The goal is to bias
the RNN generator in order to maximize the pIC50 and the number of molecules
generated with the logP in the range between 1 and 4. The importance allocated
to each objective is determined by the weight assigned a priori to each one. The
study of the best combination of weights is performed by testing several com-
binations, namely, through a uniform sampling of the weights between 0 and
1 with a step of 0.05. The results of the application of the two scalarization
techniques are summarized in Figure 2. Each weight assignment is represented
by a point whose coordinates are the rewards for each objective obtained at the
end of the RL process.

It should be emphasized that the sum of the weights assigned to the two ob-
jectives must be 1, i.e., the higher the importance dedicated to one of them, the
smaller will be the weight of the other objective. The results reflect this scenario
since, for both scalarization techniques, there is competition between the two ob-
jectives. In most cases, the greater the weight assigned to the goal, the stronger
its optimization will be and vice versa. Our goal is to identify the trade-off that
best satisfies the different molecular purposes. In this sense, the solutions identi-
fied as red points are considered non-dominated since they have both objectives
better optimized than the others, the dominated solutions. However, the non-
dominated solutions are incomparable with each other as they all have one goal
with a higher reward than the other. The identification of the best solution has
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to be conducted with a more accurate assessment based on the direct analysis
of the molecular properties. Therefore, non-dominated solutions were compared
considering properties such as biological affinity, logP, validity, uniqueness, di-
versity, and synthesizability. Comparing the binding affinity property is done by
calculating the distributions between molecules generated by the simple RNN
generator and after retraining by MORL. The more significant the difference
between both distributions - represented in the difference affinity column - the
greater the biological affinity of molecules optimized towards the target. The
results obtained for the different non-dominated solutions for each scalarization
technique are shown in Table 1.

Solution
Affinity
biasing

% in range
LogP

Valid
(%)

Diversity
Unique

(%)
SAS

1 - Lws 0.12 90.19 77.78 0.79 63.49 1.98

4 - Lws 0.19 85.43 80.60 0.86 76.39 2.27

12 - Lws 0.51 89.19 94.23 0.83 87.92 1.96

17 - Lws 0.18 62.93 83.35 0.82 69.45 2.12

2 - Chev 0.39 91.67 85.55 0.85 43.42 2.38

4 - Chev 0.31 91.34 93.24 0.81 20.13 2.21

15 - Chev 0.21 69.18 77.63 0.76 75.4 2.01

20 - Chev 0.13 64.33 80.25 0.86 99.43 2.51

21 - Chev 0.48 76.92 86.53 0.81 85.61 2.51

Table 1: Comparison of the non-dominated solutions obtained for each scalarization tech-
nique: Lws and Chev stands for linear weighted sum and Chebyshev, respectively.

From the analysis of the results, it is possible to identify a set of retrained
generators that manage to generate molecules with interesting properties. In
particular, the LWS scalarization technique with a weight of 0.55 for biological
affinity is the one with the most appropriate trade-off for the different evaluated
properties. In addition to a significant pIC50 difference, approximately 90% of
the molecules fall within the optimal logP range. Furthermore, the Tanimoto
diversity, as well as the rates of diversity and uniqueness, indicate that this
model manages to generate synthesizable molecules with novelty and syntacti-
cally valid. Figure 3 shows the direct comparison between the molecules gener-
ated by the simple generator and the model highlighted in Table 1. The results
demonstrate that despite the two objectives being competing, it was possible to
identify a compromise solution that adequately satisfies both. In practice, the
set of molecules obtained has a high probability of inhibiting the receptor and
having a logP within the desired range. As a result, it is possible to affirm that
most of the molecules are within the desired range of these properties, which are
crucial for the lead compounds to be promising.

4 Conclusion
In real-world applications like lead optimization, it is often desired to op-

timize several different properties simultaneously. For example, we may want
to optimize the selectivity of a drug while keeping the solubility in a specific
range. This framework can tackle this problem by applying multiobjective rein-
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(a) (b)

Fig. 3: Comparison between simple and re-trained Generators regarding the biological affinity
(a) and percentage of molecules inside the desired logP range (b).

forcement learning and considering different conflicting properties of a candidate
molecule in order to be processed in the further drug discovery process.
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