
Using Autoencoders to Generate Skeleton-based
Typography

Jéssica Parente∗[0000−0003−1612−5513], Lúıs Gonçalo∗[0000−0002−7176−4206], Tiago
Martins[0000−0003−2638−237X], João Miguel Cunha[0000−0001−6502−3500], João

Bicker[0000−0002−0670−1217], and Penousal Machado[0000−0002−6308−6484]

University of Coimbra, CISUC, Department of Informatics Engineering
{jparente,lgoncalo,tiagofm,jmacunha,bicker,machado}@dei.uc.pt

Abstract. Type Design is a domain that multiple times has profited
from the emergence of new tools and technologies. The transformation
of type from physical to digital, the dissemination of font design software
and the adoption of web typography make type design better known and
more accessible. This domain has received an even greater push with the
increasing adoption of generative tools to create more diverse and exper-
imental fonts. Nowadays, with the application of Machine Learning to
various domains, typography has also been influenced by it. In this work,
we produce a dataset by extracting letter skeletons from a collection of
existing fonts. Then we trained a Variational Autoencoder and a Sketch
Decoder to learn to create these skeletons that can be used to generate
new ones by exploring the latent space. This process also allows us to
control the style of the resulting skeletons and interpolate between differ-
ent characters. Finally, we developed new glyphs by filling the generated
skeletons based on the original letters’ stroke width and showing some
applications of the results.

Keywords: Type Design · Variational Autoencoder · Skeleton-basis Ty-
pography.

1 Introduction

The design of type has undergone numerous changes over time [4]. In the early
years, typography was seen as a system made up of a series of rules. The artis-
tic movements that arrived at the beginning of the twentieth century rejected
the historical forms and transformed outdated aspects of visual language and
expression. However, projects that combined software, arts and design only ap-
peared a few years later with the proliferation of personal computers, allowing
programming to reach a wider audience. Thanks to all these changes, the tools
to design type changed, and new possibilities for typographic experimentation
appeared, resulting in (i) grammar-based techniques that explore the principle

* These authors contributed equally to this work



2 J. Parente, L. Gonçalo et al.

Fig. 1. Interpolation of the skeleton and stroke width from two existing A’s (light blue
and red), resulting in a new A (dark blue).

of database amplification (e.g. [2]); (ii) evolutionary systems that breed design
solutions under the direction of a designer (e.g. [22, 15]); (iii) or even, Machine
Learning (ML) systems that learn the glyphs features to build new ones (e.g.
[14]) [18]. These computational approaches can also be helpful as a starting point
of inspiration.

Most emerging fonts continue to be developed by type designers who study
the shape of each letter and its design with great precision, despite the emer-
gence of these new possibilities. Type design is a hugely complex discipline, and
its expertise ensures typography quality [28]. Moreover, with the proliferation of
web typography and online reading, the use of variable and dynamic fonts has
increased, allowing more options for font designers and font users. Additionally,
visual identities created nowadays are becoming more dynamic [17]. Museums,
institutions, organisations, events and media increasingly rely on this type of
identity. Consequently, designers should adapt their work to these new possibili-
ties by creating dynamic identities with animations and mutations. Even though
new computer systems create expressive and out-of-the-box results, they do not
have the knowledge of an expert. But this is also an advantage, allowing non-
arbitrary exploitation that extends the range of possibilities. It is necessary to
create a balance to take advantage of the computational systems and the expert
labour. Moreover, most generative systems that design type focus on the letters’
filling and don’t see the structure of a glyph as a variation parameter.

To overcome these limitations, we propose an Autoregressive model [9] that
creates new glyph skeletons by the interpolation of existing ones. Our skeleton-
based approach uses glyphs skeletons of existing fonts as input to ensure the
quality of the generated results. The division of the structure and the filling
of the glyphs add variability to the results. Different glyphs can be created
by just changing the structure or the filling. The proposed approach enables the
exploration of a continuous range of font styles by navigating on the Autoencoder
(AE) learnt latent space. With the results of this approach, it is also possible to



Using Autoencoders to Generate Skeleton-based Typography 3

apply different filling methods that use the stroke width of the original letters
to produce new glyphs (see Figure 1).

The remainder of this paper is divided into three sections. The following sec-
tion, Related Work, analyzes related projects in the domain of computational
typography with Artificial Neural Networks (ANNs). The second section, Ap-
proach, describes the construction of the used dataset and explains the training
process. Then, in the Results section, we present and discuss the different exper-
imentations performed and the obtained results. In this section, we also present
a set of different possible applications of the outputs of our system. In the final
section, Conclusion and Discussion, we draw some conclusions and lay out future
work.

2 Related Work

Over time, the methods and technologies available for type design have improved
and designers have to evolve and adapt their process of thinking in accordance.
Generative Adversarial Networks (GANs) have revealed impressive advances,
presenting high-resolution images nearly indistinguishable from the real ones.
In the typographic field, they are helpful when one wishes to obtain coherent
glyphs in a typeface. When designing a typeface, one has to simultaneously
seek an aesthetically appealing result and coherence among the different glyphs.
This can be facilitated by exploring the similarities between the same letter
present across diverse fonts, and the transferred stylistic elements within the
same font [5]. Balashova et al. [2] develop a stroke-based geometric model for
glyphs, a fitting procedure to re-parametrise arbitrary fonts to capture these
correlations. The framework uses a manifold learning technique that allows for
interactively improving the fit quality and interpolating, adding or removing
stylistic elements in existing fonts. Campbell and Kautz [3] develop a similar
contour-based framework allowing the editing of a glyph and the propagation of
stylistic elements across the entire alphabet. Phan et al. [19] and Suveeranont
and Igarashi [26] present two different frameworks that give one or more outline-
based glyphs of several characters as input, producing a complete typeface that
bears a similar style to the inputs. Rehling and Hofstadter [21] use one or more
grid-based lowercase letters to generate the rest of the Roman alphabet, creating
glyphs that share different style features. Azadi et al. [1] develop an end-to-end
stacked conditional GAN model to generate a set of highly-stylised glyph images
following a consistent style from very few examples.

We can also imitate the behaviour of a variable font using Recurrent Neural
Networks (RNNs) and interpolate to obtain intermediate results. Lopes et al.
[14] model the drawing process of fonts by building sequential generative mod-
els of vector graphics. Their model provides a scale-invariant representation of
imagery. The latent representation may be systematically exploited to achieve
style propagation. Shamir and Rappoport [24] present a parametric feature-
based font design approach. The development of a visual design system and the
use of constraints for preserving the designer’s intentions create a more natu-



4 J. Parente, L. Gonçalo et al.

ral environment in which high-level parametric behaviours can be defined. By
changing the glyph parameters they create several family instances. Also, out-
side the typographic field, there are some good examples exploring the latent
space. Sketch-RNN [7] is an RNN able to construct stroke-based drawings. The
network produces sketches of common objects in a vector format and explores
the latent space interpolation of various vector images. There is also increased
attention to these networks and their application to facilitate the use and com-
bination of fonts. A usual way to combine different fonts is by using fonts from
the same family or created by the same designer. Another way is to find fonts
that match x-height and ascenders/descenders. Fontjoy [20] is another tool to
facilitate the process of mixing and matching typefaces and choosing fonts to
use side by side. FontMap [8] and Font-VAE [10] are tools developed with the
goal of discovering alternative fonts with the same aesthetics.

3 Approach

In this section, we present the developed model that generates new letter skele-
tons by interpolating existing ones. This process allows us to control the style of
the resulting font by navigating the latent space. We explain all the steps taken,
from the data collection and editing, passing through the development of the
network architecture until the experimentation and analysis of the results.

3.1 Data

One of the most important aspects of our approach is the collection and pre-
processing of the dataset. We compile a collection of fonts in TTF font format
with different weights from Google Fonts [6]. This dataset is composed of five
different font styles, Serif, Sans Serif, Display, Handwriting and Monospace. We
opted not to use handwriting and display fonts because they were largely dis-
tinct from the rest, which is not desirable for our approach. Their ornamental
component, sometimes not even filled, complicates the extraction of a represen-
tative skeleton. We only worked with 26 characters (A-Z) of the Latin alphabet
in their capital format. We believed that, as a work in progress, it would be best
to create a dataset with a few characters. By just using capital letters, we are
reducing the complexity of the approach.

After selecting the fonts, we remained with 2623 TTF files. Then, we use
the library Skelefont [16] * to extract the skeleton of a font file. It applies the
Zhang-Suen Thinning Algorithm [29] to derive the structural lines of a binary
image. This library also allows the extraction of the points of the skeletons as
well as the connections between them. It can also calculate the distance between
the points and their closest borderline pixel, returning the stroke width of the
original glyph at each of these points.

For each font, we rasterise the vectors that compose the skeleton of each
glyph into a 64x64px black and white image. We also save all points’ positions

* <https://github.com/tiagofmartins/skelefont>



Using Autoencoders to Generate Skeleton-based Typography 5

and stroke width of the original glyph in a file to use later to generate the filling
of the glyphs. Then, we repeat the process for the 26 letters of the alphabet
(capital letters of the Latin alphabet only). This process is shown in the first
three images of the diagram of Figure 2.

3.2 Network Architecture

The proposed model consists of a Conditional Variational Autoencoder (VAE)
[11] and an Autoregressive sketch decoder. We used a VAE instead of a regular
AE to allow us to manipulate the latent vectors more easily. The output of
the VAE are parameters of distribution instead of vectors in the latent space.
Moreover, the VAE imposes a constraint on this latent distribution forcing it to
be a normal distribution which makes sure that the latent space is regularised.
Therefore, we can create smoother transitions between different fonts when we
sample the latent space moving from one cluster to the other. The Conditional
part of the model allows us to input which letter we are encoding and decoding
allowing us to manipulate better which letter we are creating. Finally, as all the
letters share the same latent space we can also explore the skeletons between
different letters.

Figure 2 shows a diagram of the architecture used. In summary, the encoder
employs a Convolutional Neural Network (CNN) that processes the greyscale
images and encodes them into two 64-D latent vectors which consist of a set of
means (µ) and standard deviations (σ) of a Gaussian representation. Through
experimentation, we found that size 64 for the latent code presents the best
results for our approach as it is a good trade-off, allowing us to compress all the
characteristics of the letter while keeping its tractability. Then, using the mean
and standard deviation we take a sample from the Gaussian representation z to
be used as input for both decoders, the image decoder and the sketch decoder.
The image decoder consists of a set of convolutional transpose layers that receive
the z vector and decodes it into a greyscale image which is compared with
the original input. The sketch decoder consists of an LSTM [9] with dropout
[25, 23] that transforms the z vector into a sequence of 30 points creating a single
continuous path. This path is rasterised using a differentiable vector graphics
library [13] to produce an output image. This library allows converting vector
data to a raster representation while facilitating backpropagation between the
two domains. In the rasterisation process, we take the sequence of 30 x and y
values and transform them to canvas coordinates. Then, we create a line that
connects all points following the same order they are returned from the sketch
decoder. The width of this path needs to be carefully selected to match the
width of the original skeleton. If the width of the path is thinner than in the
original images, at some part of the training process, the network stops trying
to compose the whole letter and starts to fill the width of the letter in a zig-zag
manner. However, if the line is thicker than in the original images we lose detail
in the final skeleton.

Finally, we render the produced path in a canvas as greyscale image that
is compared with the original image. Although the standard VAE works at the



6 J. Parente, L. Gonçalo et al.

Fig. 2. Diagram of the architecture of our approach.

pixel level, the output of our sketch decoder is a sequence of points, thus allow-
ing the generation of scalable vector graphics that allow easier manipulation of
the generated skeletons without losing quality. The loss value is calculated in a
similar way as in the standard VAEs. We calculate the Binary Cross Entropy
between the output images of the image decoder and the original inputs. We also
calculate the Kullback-Leibler Divergence [12] to allow a regularised distribution
of the latent space. Finally, we compute the Binary Cross Entropy between the
original inputs and the output of the sketch decoder. To obtain the final loss
value we add the three values together.

4 Results

The VAE and sketch decoder trained for 50 epochs with a learning rate of 0.001
and a batch size of 256. As mentioned before, we use 2623 64× 64px black and
white images of skeletons for each capital letter of the Latin alphabet, so our
dataset is constituted of 68 198 images.

4.1 Reconstruction of skeletons

As mentioned before, the model returns a sequence of points that, when con-
nected, create a reconstruction of the skeleton image used as input. In most cases,
the generated strokes reconstruct the basic features of the skeleton. For example,
in the case of the letter “A”, the network first creates one stem, then the crossbar
connects both stems, and finally draws the second stem. Even though there is
nothing to control the distance between points or to enforce them to be close,
the network learns that it needs to connect both stems at the beginning and the
end of the sequence. Another interesting feature observable in the reconstruction
is related to how the ANN handles the letter “T”. This letter presents one of
the simplest skeletons of the alphabet, so the network can learn how to generate
the whole structure of the letter very quickly in comparison with others.



Using Autoencoders to Generate Skeleton-based Typography 7

Fig. 3. Comparison between the originals (left) and the reconstructed skeletons (right).

Figure 3 presents a comparison between the original inputs and the recon-
structed skeletons using a single stroke. The reconstructions of “C”, “L” or “K”,
for example, are very similar. The letters “A”, “X” and “K” present a more
complex challenge to the network as it needs to create a path that overlaps itself
to draw the whole letter structure with only one line. Sometimes, the serif is lost
in the reconstruction due to the same issue. The line must overlap itself multiple
times to create the small parts without messing with the overall structure of the
letter. But the other reason for this could be that the number of letters with
serif is lower than the number of letters without it.

In summary, even though the small details of the letters might be lost, our
network is able to create the minimal structure of the letter, generating skeletons
that cannot be confused with any other letter.

4.2 Latent representation of font style

To understand if the trained model can learn a latent representation for the
different letters that is smooth and interpretable, we need to visualise the 64-
dimensional z vectors for the dataset. So we take all the images of the dataset
(68198 images) and encode them using our network. Then, using the means and
standard deviations of each encoded image we took a sample from the distribu-
tion. Finally, we took all the z vectors and reduced their dimensionality using
the t-SNE algorithm [27]. This allows us to reduce the z vectors from a size of
64 to two dimensions which can be translated to positions in a two-dimensional
domain. For each position of a two-dimensional grid, we place the image of the
best candidate. We select this candidate by finding the two-dimensional encod-
ing closest to that position. Figure 4 presents the visualisation of the results. In
general, the model can separate the different letters into clusters. In some cases,
it is also possible to observe that similar letters are placed near each other, for
example in the case of the letters “B”, “R” and “P”. These three letters present
similar anatomical characteristics, they share a top bowl and they all have a
vertical stem, thus they are placed near each other. The same happens for the
letters “T” and “I” which are placed more separated from the rest but near each



8 J. Parente, L. Gonçalo et al.

other. Even though the majority of the skeletons for the letter “I” is represented
with a single stem, in some cases, when they have serif, they are similar to the
letter “T” but with a cross stroke on the top and bottom part of the letter. This
leads to both letters having a strong similarity between each other, therefore
they are placed together in the latent space.

We also create a similar representation contemplating the skeleton images of
a single letter (2623 images). To understand if the trained model was able to
smoothly change styles within the same letter we created a similar visualisation
as in Figure 4. Figure 5 presents the visualisation of the results for the letter
“R”. As it is possible to observe, the model is able to separate the different font
weights across the latent space, creating different regions. The zoom-in boxes
show four separate locations where we notice a concentration of specific font
styles. In (A) it is presented a region where the condensed fonts are, while the
opposite corner (D) represents the most extended fonts. It is also possible to
observe that (B) represents the italic, and finally (C) presents most of the fonts
with serifs. Local changes within these regions are also visible, where the font
width increases when distancing from the region (A) and approximating to the
region (D). It is also possible to observe a slight increase in the font height in
the top-bottom direction.

4.3 Exploring the latent space

After analysing whether the latent space translates font characteristics for mean-
ingful latent representation, we explore linear interpolations between pairs of
skeletons for a given glyph. First, we encode two randomly selected fonts from
the dataset into their corresponding z vectors. Then, we perform a linear in-
terpolation between the two vectors and, using the trained sketch decoder, we
reconstruct the skeletons for these vectors. Figure 6 shows some results of this
exploration. The first and last glyph of each row are the original skeletons, and
in the middle are the interpolations between them two. The interpolation per-
centage starts at 0% and ends at 100%, which means that the second skeleton
is a reconstruction of the glyph on the left side, and the penultimate skeleton is
a reconstruction of the glyph on the right.

The results show that the model is not only able to decode meaningful skele-
tons but it is also able to control several characteristics of it. In the example of
the letter “N”, not only the model can control the width of the letter, but it also
controls its height.

As it is possible to observe in the interpolations presented in Figure 6, not
only the model is able to decode meaningful skeletons but it is able to control
several characteristics of it.* In the example of the letter “H”, the width of the
letter is slightly changed until it matches the width of each skeleton input image.
In the case of the letter “N”, not only the model is able to control the width of
the letter, but it also controls its height. At the same time that the width of the

* An example video containing multiple skeleton interpolations can be seen at https:
//imgur.com/a/qf1m2Da

https://imgur.com/a/qf1m2Da
https://imgur.com/a/qf1m2Da


Using Autoencoders to Generate Skeleton-based Typography 9

Fig. 4. t-SNE visualisation of the learned latent space z for all the capital letters of
the Latin alphabet.

letter changes, its height is also modified to match its parents, which allows wider
control over the skeleton that can be created. In the case of the letter “T”, it is
possible to observe that the model can also control how much the letter is italic.
As we go from the left input skeleton image to the right, the stem of the letter
gets closer to a vertical position. This not only shows that the model is capable
of perceiving different angles but it can also transition between them gradually.
Therefore, we might be able to control all these stylisations of the skeletons by
navigating the latent space. This can be observed in the visualisation shown in
Figure 5. There are certain regions dedicated to different letter styles. So, we
can navigate this space in order to create fonts that demonstrate a set of desired
styles.

We also interpolate between skeletons of different letters. By observing the
resulting skeletons present in Figure 7, we observe that the model is able to pass
from one skeleton to another from different letters. Sometimes the morphings
are not even expected to be smooth, because some letters have anatomical parts
completely different, like for instance the “Z” and “T”. The generated skeleton



10 J. Parente, L. Gonçalo et al.

Fig. 5. t-SNE visualisation of the learned latent space z for a single letter.

Fig. 6. Results of the latent space interpolation between different skeletons of the same
letter. An example video of multiple interpolations can be found at https://imgur.

com/a/qf1m2Da.

Fig. 7. Results of the latent space interpolation between skeletons of different letters.

https://imgur.com/a/qf1m2Da
https://imgur.com/a/qf1m2Da


Using Autoencoders to Generate Skeleton-based Typography 11

starts as “Z” but over time it loses its bottom cross stroke. Moreover, its diagonal
stroke slightly changes its angle and transforms itself into the stem of a “T”.
There are also other transformations that are expected, such as the case of
“P” and “F”, which share a stem. Over the line, the generated skeleton goes
opening its bowl to create the arms of the “F” and at the same time slightly
inclines the stem to create an italic glyph according to the inclination of the
“F”. Another information that we can obtain is that sometimes we start to
visualise intermediate skeletons that look like other existing letter’s skeletons.
For example, when we explore the latent space between “G” and “L” in some
intermediary steps we can observe some resemblance with the letter “C”.

4.4 Transforming skeletons into glyphs

So far, we have demonstrated how our system is able to reconstruct and create
new skeletons through the exploration of latent space. However, our goal is to
develop a tool to support the design process by allowing the creation of artificial
variable fonts or morphing fonts, so it is imperative to test the application of
the generated skeletons.

As mentioned before, the skeleton extraction library [16] allows, in addition
to extracting the points, obtaining the stroke width at each point of the skeleton.
When we created the dataset, by extracting the skeletons of the uppercase letters
of the Latin alphabet for each font file that we select, we saved the points of each
skeleton and its stroke width to use posteriorly. With these values, we were able
to interpolate the stroke width along with the generated skeleton. The process
of filling the generated skeletons is the following. First, we randomly choose two
skeletons to interpolate. Then, we calculate the stroke width at each point of
the generated skeletons. To do this, we calculate the corresponding point on the
skeletons that serve as input for the creation of intermediate skeletons. We do
this calculation by overlapping the input skeletons and the generated skeleton
and calculating the closest match. The stroke width at each point is a result of
combining the interpolation of the widths of the input skeletons. Figure 8 shows
some results in which each row represents a different interpolation. Looking at
the generated glyphs, we can see that they look similar to a regular font. With
a few adjustments, we could use them as a variable font. Now, with interpolated
fill, the contrast between variations is more visible, because we had another
parameter to the glyph design. By splitting the skeleton and the filler we have
more visual possibilities because we are not stuck with a filler. In these tests,
we use filling in the original fonts to fill in the intermediate ones, but it is not
mandatory. We can even use some fonts to create the skeleton and others to
create the filling or even use a fixed value along the skeleton. By applying the
filling, the interpolated glyphs become more unique, by suffering more alterations
when moving between the two input glyphs. For example, in the “S” (Figure
8) we can observe that besides the axis alteration, the glyphs also change in
contrast. The generated “S” near the left is styled more like a modern font, with
high contrast and serifs. From left to right the contrast inside the generated
glyphs turns almost nil and they lost the serifs.



12 J. Parente, L. Gonçalo et al.

Fig. 8. Results of the latent space interpolation filling the skeleton with an interpolated
stroke width.

As mentioned before, our system provides a tool to facilitate the process of
building these dynamic identities with a typographic component. With this tool,
designers can generate skeletons and develop a filling to create their versions
of glyphs. To demonstrate the application of our system we made a series of
experimentations with different ways of using the obtained skeletons by our
model (see Figure 9 and 10).

In the first application (Figure 9), we present the interpolation* between
two input glyphs. The input glyphs are represented in red and light blue while
the generated one is in dark blue. To visualise the three superimposed glyphs,
we apply the multiply effect, thus obtaining another colour that represents the
common parts between the generated and the original ones. The generated glyphs
are very diverse on a visual level, enabling the design of a dynamic visual identity
with the use of only two fonts. We believe that the mutating factor of these results
provides an identity that is easily placed side by side with the dynamic visual
identities and variable fonts that are made these days. In the second application
(Figure 10), the generated glyphs use just the interpolated skeletons. The stroke
width is also calculated based on the input glyphs. However, the filling is further
away from the traditional typographic visual aspect. Along the skeleton line, we
draw a series of crosswise line segments to define the width of the glyph’ stroke.
The density changes to accommodate the same number of line segments between
each pair of points.

5 Conclusion and Discussion

Since its emergence, type design has been adapting to technological advances.
Nowadays, most typefaces are developed by type designers, who studied the
design and anatomy of each character with great precision. Type design is a dif-
ficult and time-consuming process. Our approach takes advantage of the knowl-
edge present in a design of a typeface and the computational possibilities that

* A video showing multiple skeleton and stroke width interpolations can be seen at
https://imgur.com/3XTecg5.

https://imgur.com/3XTecg5


Using Autoencoders to Generate Skeleton-based Typography 13

Fig. 9. First example of application of the generated skeletons into glyphs to create a
typographic identity. The glyphs present in the images are composed of the two input
glyphs, in red and light blue, and the interpolated glyph, in dark blue. An example
video of multiple interpolations can be found at https://imgur.com/3XTecg5.

ANNs provide. We propose a VAE combined with an Autoregressive model to
generate glyphs’ skeletons by interpolating existing ones. Our contributions are
the following, a sketch decoder capable of (i) reconstructing images of glyphs’
skeletons using a single stroke, (ii) controlling font styles by navigating the latent
space, (iii) interpolating between two skeletons to create new ones. By creating
interpolations between existing fonts we develop a method to help designers in
making their artificial variable fonts, easing the usual glyph production. We also
explored a feature of a skeleton extraction library, which calculates the stroke
width at each point of the letter skeleton, to produce a fill for the generated
skeletons. By interpolating between skeletons of different letters we are creating
new glyph forms that resemble other existing glyphs. This opens up new explo-
ration possibilities for the future. We envision that our approach can find use as

https://imgur.com/3XTecg5


14 J. Parente, L. Gonçalo et al.

Fig. 10. Second example of application of the generated skeletons into glyphs to create
a typographic identity. The glyphs present in the image are the result of the interpo-
lation of two input skeleton glyphs.

a tool for graphic designers to facilitate font design. We can employ this system
to generate new skeletons, which the designer can fill with the desired style, but
also be used as inspiration seed to create new glyphs.

We expect to make several future contributions. First, we want to change the
architecture of the sketch decoder to be able to use multiple strokes. In some
cases, our approach was able to draw skeleton letters that require more than one
line by overlapping them. However, if the sketch decoder had access to multiple
strokes, this problem could be solved more easily. Finally, we intend to change
the input of the network so it can receive a vector version of the skeletons instead
of a pixel-based image. This way we can work with an end-to-end architecture
focused on vector format leading to better quality skeletons without any loss of
information.

6 Acknowledgments

This work is partially funded by national funds through the FCT - Founda-
tion for Science and Technology, I.P., within the scope of the project CISUC -
UID/CEC/00326/2020 and by European Social Fund, through the Regional Op-
erational Program Centro 2020, and under the grant SFRH/BD/148706/2019.



Bibliography

[1] Samaneh Azadi, Matthew Fisher, Vladimir G Kim, Zhaowen Wang, Eli
Shechtman, and Trevor Darrell. Multi-Content GAN for Few-Shot Font
Style Transfer. CoRR, abs/1712.00516, 2017.

[2] Elena Balashova, Amit H Bermano, Vladimir G Kim, Stephen DiVerdi,
Aaron Hertzmann, and Thomas A Funkhouser. Learning A Stroke-Based
Representation for Fonts. Comput. Graph. Forum, 38(1):429–442, 2019.

[3] Neill D. F. Campbell and Jan Kautz. Learning a manifold of fonts.
ACM Trans. Graph., 33(4), jul 2014. ISSN 0730-0301. https://doi.org/
10.1145/2601097.2601212. URL https://doi.org/10.1145/2601097.

2601212.
[4] Karen Cheng. Designing type. Yale University Press, 2020.
[5] João Miguel Cunha, Tiago Martins, Pedro Martins, João Bicker, and Pe-

nousal Machado. Typeadviser: a type design aiding-tool. In C3GI@ ESSLLI,
2016.

[6] Google. Google Web Fonts, 2012. http://www.google.com/webfonts/v2/,
visited 2022-01-02.

[7] David Ha and Douglas Eck. A neural representation of sketch drawings. In
ICLR, 2018. URL https://openreview.net/forum?id=Hy6GHpkCW.

[8] Kevin Ho. Organizing the World of Fonts with
AI, 2017. https://medium.com/ideo-stories/

organizing-the-world-of-fonts-with-ai-7d9e49ff2b25, visited
03/01/2022.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[10] Sukjoo Hong. Font-VAE, 2019. https://github.com/hngskj/Font-VAE,
visited 2022-01-02.

[11] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes.
In 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

[12] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math.
Statist., 22(1):79–86, 1951.

[13] Tzu-Mao Li, Michal Lukáč, Michaël Gharbi, and Jonathan Ragan-Kelley.
Differentiable vector graphics rasterization for editing and learning. ACM
Transactions on Graphics (TOG), 39(6):1–15, 2020.

[14] Raphael Gontijo Lopes, David Ha, Douglas Eck, and Jonathon Shlens.
A Learned Representation for Scalable Vector Graphics. In DGS@ICLR.
OpenReview.net, 2019.

[15] Tiago Martins, João Correia, Ernesto Costa, and Penousal Machado. Evo-
type: Evolutionary type design. In International Conference on Evolution-
ary and Biologically Inspired Music and Art, pages 136–147. Springer, 2015.

[16] Tiago Martins, Jéssica Parente, and João Bicker. Skelefont, 2018. https:

//github.com/tiagofmartins/skelefont, visited 2022-02-01.

https://doi.org/10.1145/2601097.2601212
https://doi.org/10.1145/2601097.2601212
https://doi.org/10.1145/2601097.2601212
https://doi.org/10.1145/2601097.2601212
https://doi.org/10.1145/2601097.2601212
https://doi.org/10.1145/2601097.2601212
http://www.google.com/webfonts/v2/
https://openreview.net/forum?id=Hy6GHpkCW
https://medium.com/ideo-stories/organizing-the-world-of-fonts-with-ai-7d9e49ff2b25
https://medium.com/ideo-stories/organizing-the-world-of-fonts-with-ai-7d9e49ff2b25
https://github.com/hngskj/Font-VAE
https://github.com/tiagofmartins/skelefont
https://github.com/tiagofmartins/skelefont


16 J. Parente, L. Gonçalo et al.

[17] Tiago Martins, João M Cunha, João Bicker, and Penousal Machado. Dy-
namic visual identities: from a survey of the state-of-the-art to a model of
features and mechanisms. Visible Language, 53(2), 2019.

[18] Jon Paul McCormack, Alan Dorin, and Troy Christopher Innocent. Gener-
ative design: a paradigm for design research. In J Redmond, D Durling, and
A de Bono, editors, Futureground, volume 2, pages 0 – 0. Monash Univer-
sity, 2005. ISBN 0975606050. URL http://www.designresearchsociety.

org/futureground/intro.html.
[19] Quoc Huy Phan, Hongbo Fu, and Antoni B Chan. FlexyFont: Learning

Transferring Rules for Flexible Typeface Synthesis. Comput. Graph. Forum,
34(7):245–256, 2015.

[20] Jack Qiao. Fontjoy - Generate font pairings in one click. http://fontjoy.
com/, visited 2022-01-02.

[21] John Rehling and Douglas Hofstadter. Letter Spirit: A Model of Visual
Creativity. In ICCM, pages 249–254, 2004.

[22] Michael Schmitz. genoTyp, an experiment about genetic typography. Pro-
ceedings of Generative Art 2004, 2004.

[23] Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. Recurrent
dropout without memory loss. In Nicoletta Calzolari, Yuji Matsumoto,
and Rashmi Prasad, editors, COLING, pages 1757–1766. ACL, 2016. ISBN
978-4-87974-702-0.

[24] Ariel Shamir and Ari Rappoport. Feature-Based Design of Fonts Using
Constraints. In Roger D Hersch, Jacques André, and Heather Brown, edi-
tors, EP, volume 1375 of Lecture Notes in Computer Science, pages 93–108.
Springer, 1998. ISBN 3-540-64298-6.

[25] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15(1):1929–1958,
2014.

[26] Rapee Suveeranont and Takeo Igarashi. Example-based automatic font gen-
eration. In Robyn Taylor, Pierre Boulanger, Antonio Krüger, and Patrick
Olivier, editors, Smart Graphics, volume 6133 of Lecture Notes in Computer
Science, pages 127–138. Springer, 2010. ISBN 978-3-642-13543-9.

[27] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE.
Journal of Machine Learning Research, 9:2579–2605, 2008.

[28] Bruce Willen and Nolen Strals. Lettering & type: creating letters and de-
signing typefaces. Princeton Architectural Press, 2009.

[29] T Y Zhang and Ching Y Suen. A fast parallel algorithm for thinning digital
patterns. Communications of the ACM, 27(3):236–239, 1984.

http://www.designresearchsociety.org/futureground/intro.html
http://www.designresearchsociety.org/futureground/intro.html
http://fontjoy.com/
http://fontjoy.com/

	Using Autoencoders to Generate Skeleton-based Typography

