
Microprocessors and Microsystems 99 (2023) 104848

A
0

T
s
R
U

A

K
I
G
R
C
D
L

1

i
p
d
p
m
o
d
t

A
i
S
r
t
b
e
m
o
r
d
w

h
R

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

esting the limits of general-purpose hypervisors for real-time control
ystems
ui Queiroz, Tiago Cruz ∗, Paulo Simões

niversity of Coimbra, CISUC, DEI, Departamento de Eng. Informática da FCTUC, Polo II da Universidade de Coimbra, 3030-290 Coimbra, Portugal

R T I C L E I N F O

eywords:
ndustrial automation control systems
eneral-purpose off-the-shelf hypervisors
eal-time cyber–physical systems
onverged Infrastructure
eterminism
atency

A B S T R A C T

With the emergence of the Industry 4.0 paradigm, there is a need to introduce a significant degree of flexibility,
security and resilience in automation infrastructures, while keeping up with real-time requirements that are
characteristic of such domains. Interestingly, many of these driving principles are the same that encouraged
the adoption of virtualization technologies on the IT domain, somehow suggesting that the same benefits could
be realisable for Industrial and Automation Control Systems, allowing to virtualise servers and cyber–physical
system control devices. However, the suitability of using off-the-shelf hypervisor technologies to address the
specific real-time requirements of automation infrastructures remains unclear, due to their focus on maximising
systems throughput and capacity, often at the expense of determinism and increased latency.

This work addresses this problem, presenting a discussion and an empirical evaluation on the feasibility
of using general purpose off-the-shelf hypervisors to virtualise cyber–physical systems’ servers and control
devices. While the evaluation concludes that some of these hypervisors are already capable of dealing with
typical real-time workloads, this cannot be generalised to all types of real-time systems.
. Introduction

Real-time cyber–physical systems are embedded in the most diverse
ndustrial environments, controlling a wide range of cyber–physical
rocesses, such as production plants, railways, power generation and
istribution, and water distribution. The emergence of Industry 4.0
aradigms such as smart factories has considerably raised the require-
ents in terms of resilience, security, scalability, flexibility and cost

ptimisation. Curiously, the same set of requirements was the main
river of the softwarization, virtualization and consolidation process
hat is taking place in the IT domain in general.

Actually, this virtualization trend already arrived at the Industrial
utomation and Control Systems (IACS) domain, with the virtual-

zation of less demanding components, such as Historians and other
upervisory Control and Data Acquisition (SCADA) stations with no
eal-time requirements. However, gradually extending this virtualiza-
ion trend towards real-time components would enable considerable
enefits. Cruz et al. [1], for instance, propose decoupling the execution
nvironment of IACS control devices such as PLCs from their I/O
odules, by means of virtualization. The internal I/O bus that previ-

usly established the connection between these components would be
eplaced by a low-latency and deterministic network using software-
efined networking (SDN) enabled Ethernet fabric. All the components
ould be orchestrated based on the simplified programmability offered

∗ Corresponding author.
E-mail address: tjcruz@dei.uc.pt (T. Cruz).

by software-defined networking (SDN), allowing for a dynamic creation
and deployment of the virtualized execution environments (the virtual
PLC, or vPLC), as well as the consequent routes and virtual channels
necessary to accommodate the communication data flows between the
different equipment (Fig. 1).

Hence, in order to validate the feasibility of such approaches, it is
mandatory to perform an analysis of the distinct technologies required
for their implementation, in order to identify possible developments
that may prove instrumental. Among several technologies deemed cru-
cial for this purpose, real-time hypervisor capabilities rank among
the most important. While real-time hypervisors do exist, specific de-
sign limitations imposed by low-latency deterministic capabilities may
prove too restrictive or inefficient for consolidation of less demanding
workloads, thus making a case for studying and understanding the
limits and capabilities of conventional hypervisors, whose main focus
is oriented towards consolidation of IT workloads and throughput
optimisation in private or public cloud data centre environments.

This paper addresses this topic by analysing the feasibility of using
commercial off-the-shelf hypervisors in the context of real-time envi-
ronments, namely for supporting the virtualization of cyber–physical
control devices such as programmable logic controllers.

The rest of the paper is organised as follows. First, an analysis on
cyber–physical systems is provided, with emphasis on their control
vailable online 3 May 2023
141-9331/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.micpro.2023.104848
eceived 6 December 2022; Received in revised form 19 March 2023; Accepted 28
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

April 2023

https://www.elsevier.com/locate/micpro
http://www.elsevier.com/locate/micpro
mailto:tjcruz@dei.uc.pt
https://doi.org/10.1016/j.micpro.2023.104848
https://doi.org/10.1016/j.micpro.2023.104848
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2023.104848&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Microprocessors and Microsystems 99 (2023) 104848R. Queiroz et al.
Fig. 1. The vPLC architecture — source [1,2].

devices, which are one of the main targets of this research. Next, an
analysis of real-time systems is presented, highlighting their distinctive
characteristics and influencing factors — within this scope, real-time
operating systems (RTOS) and mixed-criticality systems are also cov-
ered. Following, a concise literary review on system virtualization is
presented. Different types of virtualization techniques are discussed, as
well as the differences between commercial off-the-shelf (COTS) hyper-
visors and real-time (RT) hypervisors, also encompassing examples of
virtualization techniques applied in industrial environments. Finally,
the results of an experimental analysis effort designed to assess the
viability of virtualizing real-time workloads using COTS hypervisors are
presented. The obtained tests results are then analysed, and the final
conclusions are outlined.

2. Industrial and automation control systems

In this section, we provide a conceptual bridge between the automa-
tion and virtualization domains, in order to help the reader better grasp
the challenges arising from virtualizing control equipment within the
scope of cyber–physical systems (CPS) and, more specifically, within
Industrial Automation and Control Systems (IACS).

First, an overview the nature and scope of IACS technologies, intro-
ducing a series of concepts, definitions and technologies which help the
reader follow the rationale and evaluation efforts undertaken in this
paper. Next, we discuss the specific concerns and requirements to be
considered when virtualizing IACS control devices.

2.1. Cyber–physical systems

CPS [3] aim at monitoring and controlling the most diverse physical
processes, by means of maintaining a close integration between those
processes and the computing and communications technologies used
to support the associated control systems (Fig. 2). Their presence in
diverse environments, such as automotive, railways, aeronautic, smart
grids, water supply, natural gas, fuel and oil transportation, manufac-
turing and healthcare, demonstrates the relevance of CPS in everyday
life.

Among CPS, IACS play an important role in ensuring the availability
and operation of essential services and critical infrastructures on a
day-to-day basis. IACS manage all sorts of processes, allowing for
decisions to be made based on real-time information, translating them
into actions taken by the various physical actuators belonging to the
manufacturing process. However, and despite being recognised for their
robustness and reliability, the technologies used at the core of these
systems have hardly evolved in the last decades. This is unsurprising
considering that maturity was often considered synonymous for de-
pendability and reliability. However, the emergence of the Industry
4.0 paradigm, as well as a series of security-related concerns and
incidents, has pushed the industry to change the dominant mindset
and become more open towards adopting evolved technologies and
alternative solutions.
2

Fig. 2. Cyber–physical system.

2.2. Control devices

Control devices are one of the most important components com-
monly found in IACS. In general, these are embedded systems com-
posed of a processing unit and I/O modules, and can operate in stan-
dalone mode or as part of a distributed topology. Their importance
stems from the fact that they are responsible for processing data com-
ing from (but not only) the physical part of the system and making
decisions accordingly. These decisions define the CPS behaviour and
determine the efficiency and stability of the entire system. Poor func-
tioning or failure of a control device can have relevant consequences,
ranging from system downtime to negative environmental impact or
even loss of human life, among others. Therefore, it is of utmost
importance that these control devices have a high level of availability
and security.

Moreover, because they are physical devices and are often spatially
dispersed, commissioning and maintenance are quite costly and time
consuming. To scale the system or guarantee redundant solutions poses
the same problems, since it is mandatory to acquire new equipment and
perform new commissioning.

On the other hand, the concept of smart factory implies the exis-
tence of a flexible infrastructure, capable of adapting itself to different
realities according to the needs of the moment. This may lead to a
control device having to be dynamically deployed in the field, for
reasons of criticality, at a given point in time. However, in the short
term, its goal can be radically changed, having no reason to be deployed
in the field and, on the contrary, benefiting from being located in a data
centre where it may take advantage of having access to more computing
resources. Also, the more physical elements are present in the CPS, the
less flexibility it will have and the more complex it will be to adapt
itself to a new reality.

Having these problems in mind, and noting the resemblance to
some of the problems that existed in the data centres and which
were solved through the virtualization of physical devices and network
functions and, recently, complemented with the use of software-defined
networking (SDN) technology, one wonders if it would be possible to
apply similar techniques on cyber–physical system control devices, in
order to deal with the aforementioned problems.

In real-time cyber–physical systems, regardless of whether they
are mixed-criticality systems or not, there are typically one or more
hardware control devices responsible for the automation processes. In
IACS scenarios, such devices may include remote terminal units (RTU),



Microprocessors and Microsystems 99 (2023) 104848R. Queiroz et al.
Fig. 3. Control device cycle.

programmable logic controllers, programmable automation controllers
(PAC), and process control units, spread throughout a distributed con-
trol system (DCS). Often some terms are used interchangeably in the
industry due to a lack of a common accepted definition and/or specifi-
cation, as it is the case for the distinction between sophisticated RTUs
and PLCs.

These are embedded systems, based on microcontrollers or mi-
croprocessors complemented by peripheral circuits, running real-time
operating systems responsible for the execution environment of the
main functions and services, with communication capabilities like serial
point-to-point, bus topologies or Ethernet and TCP/IP. There are two
common types of equipment: compact and modular. In compact equip-
ment all the hardware is built-in and fixed. The modular equipment
are installed in a special chassis which allows expansion modules
(e.g. I/O modules) to be added a posteriori by means of an internal
communication bus. Nonetheless, all of them share the same functional
basis, as depicted in Fig. 3. Data is received from sensors, network
communications or other data sources, to the control device. While
performing the scan cycles, this event is detected and the control
device processes the incoming data, according to the pre-programmed
application present in the execution environment. A response to the
event is then outputted, in the form of commands to physical actuators
and/or network communications to other components of the CPS.

Determinism and predictability play an extremely important role
throughout this process. Therefore, it is essential that both the hard-
ware and the adopted internal mechanisms are able to meet the im-
posed real-time requirements. For this reason, all the control device
internal data (application, input data and other auxiliary information)
is kept at the memory level (RAM and ROM). Also, real-time operating
systems are used to guarantee the best real-time performance. Nor-
mally, two types of coding are considered: cyclic code and interrupt
code. The first one runs continuously in periodic cycles. Although the
time to run the cyclic code from start to finish is theoretically constant,
in practice it may vary due to the existence of other factors such as
interrupts, whose number and frequency can greatly increase the cycle
time. On the other hand, the interrupt code only runs when an interrupt
is raised, allowing the system programmer to tie a routine or code
section to a specific type of interrupt. This technique can be useful in
order to guarantee a timely response to an event.

3. Real-time systems

A real-time system, by definition, is able to respond to an event or
execute an action within a specified time boundary. This boundary is
called a deadline, and usually comprises only a few milliseconds or
even microseconds. Within that boundary, it is expected for such a
system to be able to receive data from the surrounding environment,
process it and, if needed, trigger some sort of response. The capability
to respond correctly and in a timely manner is closely related to
the system’s determinism and predictability. By definition, one knows
that a deterministic system involves no randomness: given the same
initial state, with the same starting conditions, the produced output
will always be the same.1 A predictable system should always produce

1 Which does not mean that, in practice, a deterministic system cannot run
algorithms including random actions.
3

Fig. 4. Real-time systems categories.

Table 1
Industrial systems end-to-end latency.

Service End-to-end latency Jitter

Factory automation (motion control) 1 ms 1 μs
Factory automation 10 ms 100 μs
Process automation (remote control) 50 ms 20 μs
Process automation (monitoring) 50 ms 20 ms
Electricity distribution (medium voltage) 25 ms 10 ms
Electricity distribution (high voltage) 5 ms 1 ms

Intelligent transport systems 10 ms 2 ms(infrastructure backhaul)

Remote control 5 ms 1 ms

results in between the same timeframe. Often, these two concepts are
merged and simply referred to as determinism.

Real-time systems can be divided into three distinct categories,
according to the impact of failing to respond within a specific time
boundary (Fig. 4):

• Hard real-time (HRT) — The inability to meet a deadline re-
sults in a system failure. Responses following the deadline are
automatically devoid of value.

• Firm real-time (FRT) — Deadlines can be infrequently missed
without causing a system failure, however, there may be a degra-
dation in the quality of service. Responses following the deadline
are automatically devoid of value.

• Soft real-time (SRT) — Deadlines can be infrequently missed with-
out causing a system failure. Responses following the deadline are
still considered, even though there may be a degradation in the
quality of service.

The time set for the deadlines depends on the system and context
in question, and it is the designer or programmer’s responsibility to
set it accordingly. While there is no ‘‘one size fits all’’ value, there are
indicative values for the end-to-end latency [4], as shown in Table 1.

3.1. Latency

Several factors can contribute to latency. The designation ‘‘end-to-
end latency’’ usually refers only to the time delay inherent in commu-
nicating data from its source to its destination. This metric is often
used to define the maximum delay accepted by a certain service or
system. This is so because it is often, and incorrectly, assumed that
ensuring timely delivery of data packets is enough to guarantee that
the systems’ latency requirements will be achieved. However, when we
analyse the delay tolerance of a real-time system, we must consider
not only the delay related to the communication network, but also
the delay at the processing level. This is due, not only but also, to
the order of magnitude of the admitted latency being very low. As
such, the processing latency cannot be discarded. The sum of both, the
network and the processing latency, must be below the maximum value
allowed by the system. Therefore, it is of utmost importance that the
processing devices present in this type of systems withstand operating



Microprocessors and Microsystems 99 (2023) 104848R. Queiroz et al.
Fig. 5. Processing latency.

cycles that allow the fulfilment of these restrictions, as well as the
communication network. Two sorts of latency must therefore be taken
into consideration: network latency and processing latency.

Network delay comprises the total delay between a signal being sent
from the point of origin to the point of destination. If we consider
a packet-switched network, the network latency is a sum of multi-
ple delays that may arise from different sources and are designated
accordingly, such as:

• Propagation delay — the time required for a packet to travel from
the sender to the receiver.

• Transmission delay — the time required to push an entire packet
into the communication channel. Its value can be estimated con-
sidering a function of the packet’s length over the transmission
rate. Normally, the specifications of the hardware being used
define the transmission rate.

• Network processing delay — the time required for a node to
process a packet and be able to check for errors and determine
its next destination.

• Queuing delay — the time that a packet spends in a queue waiting
to be processed or transmitted. In addition to the specifications of
the hardware and its QoS configurations, network overload is the
one of the main influencing factors.

When the packet delivery takes place, the network device rises an
interrupt so that the system becomes aware of this event. The real-
time process (usually referred to as RT task) responsible for dealing
with this event has first to be scheduled, then processed, and finally a
response to the event is achieved. Thus, processing delay occurs after
the packet is delivered to a real-time system control device. It is possible
to identify different sources of delay in the processing latency (Fig. 5),
among which two stand out:

• Interrupt latency — when the interrupt is raised, the system may
not be available to handle this interrupt at this exact time due
to circumstances that may be locking out interrupts. Also, actions
like having the processor saving the state of execution, and the
interrupt processing itself, add extra delay to the process.

• Dispatch latency — after the interrupt being handled, the RT task
becomes ready to run and is scheduled for processing according
to the scheduling policies. This dispatch process generates de-
lay caused by context switching, scheduling, dispatching, among
other conflicts that may arise in the process.

Both the interrupt and the dispatch latency depend on the appli-
cation domain for which the operating system was developed for. For
example, if the OS goal is to prioritise throughput, the kernel sched-
uler will probably apply a non-preemptive policy which will increase
the dispatch latency. If the OS wants to deal with mutual exclusion
problems and to assure that only one process is executed in a critical
region at a time, it may increase the maximum time that interrupts can
be disabled at the cost of increasing interrupt latency.

3.2. Jitter

As mentioned above, predictability implies producing results always
within the same time boundary. Therefore, it is essential to ensure that
4

the latency variation – also referred to as jitter – is as small as possible
and within the RT task restrictions. The lower the jitter, the higher the
predictability of the system.

In real-time systems, having a contained latency is just as (or even
more) important than having a low latency. As presented in Table 1, the
jitter value is always more restricted than the latency value. A response
being produced earlier than expected can result in synchronisation
problems, but a response being produced later than expected can result
in its invalidation. Either case may lead to a critical system failure
(depending on the type of RT system).

3.3. Power management c-states, p-states, t-states

One of the main factors that influences the mean time to failure
(MTTF) of a microprocessor is its thermal operation envelope. Opera-
tion in excess of nominal characteristics may lead to problems such as
electromigration and thermal runaway. To deal with this, modern CPUs
incorporate efficient control over its power consumption in order to
control its thermal load. It is also known that one of the great challenges
related to electronic equipment, namely computers, is the reduction of
its energy consumption. To face these challenges, processors started to
include power management techniques such as Dynamic Voltage and
Frequency Scaling (DVFS). For instance, for the Intel x86 family, such
mechanisms encompass throttling states (T-states), idle or processor
power states (C-states) and operational or performance states (P-states):

• T-states were the first to be used, specially to prevent damage
to the processor. The power manager places the processor in
different T-states according to its temperature — the higher the
temperature the higher the t-state. This technique would slow
down the execution of the running tasks by suspending them for
one or more clock cycles, allowing the processor to de-stress and
cool down.

• C-states enable the shutdown of the processor sub-systems to save
energy, and are used mainly when the CPU is idle. The higher the
state (C1, C2, . . . , Cn) the more circuits and signals are turned off
and the greater is the power saving. Nevertheless, the time needed
to return to the fully functional C0 state also increases. These
states can be divided in sub-types like Core C-states (CC-states),
Package C-states (PC-states) or logical C-states (OS C-states or
LC-states).

• P-states allow the control of the thermal load and power con-
sumption of the CPU by scaling the input voltage and the fre-
quency at which the processor runs. The higher the state (P0, P1,
. . . , Pn) the lower the voltage and the frequency, which translates
into a lower processing performance but higher power saving and
lower working temperatures.

The type and range of operation states depends on the processor,
and even processors from the same family can have variations. How-
ever, the advantages associated with these techniques come at a cost:
not only higher states imply response latency degradation, but also
swapping between them can negatively affect determinism. As such,
the same techniques that may extend the semiconductor lifespan, as
well as its MTTF, will also negatively degrade the system’s ability to
fulfil real-time requirements. For this reason, this type of techniques is
generally not recommended for use in real-time systems.

3.4. Mixed-criticality systems

The combination between the availability of multi-core micropro-
cessors with reasonable processing power, with the need to reduce size,
weight, and energy consumption of electronic systems, led to a new
approach to critical systems. Referred to as mixed-criticality system
(MCS), it optimises the use of hardware through the consolidation of
distinct systems, with different criticality levels (e.g., real-time control
tasks versus logging information), on the same hardware platform.



Microprocessors and Microsystems 99 (2023) 104848R. Queiroz et al.

E
a
p
o
w
i
t
f
o
a
c
w
c
a
p

e
p
S
p
c
t
r
p
s
a
n
i
b

t
t
w
a
H
p
p
s
f
i
s
i
R
t
e

r
o
t
p

4

t
p
s
i
d
p
a
a

w
p
m
s
s
o
c
H
–
s
o
t
a
V
i
p
d

4

m
h

p
e
a
t
h
s
l
f

The criticality level of a system is normally set according to risk
classification systems such as Safety Integrity Level (SIL), Automotive
Safety and Integrity Level (ASIL) or Design Assurance Level (DAL), as
seen in IEC 61508 and ISO 26262 standards or in DO-178C/ED-12C and
DO178B/ED-12B guidelines. The risk classification defines the level of
assurance that must be provided against system failures.

MCSs are often seen in avionics, aerospace, and automotive systems.
Although a MCS does not necessarily imply the existence of real-time
requirements, RT requirements are typically present. The merging of
distinct requirements under the same hardware raises several chal-
lenges, such as the balance between sharing resources (to optimise the
hardware usage) and the partitioning for security reasons, or the ability
to comply with RT requirements. Above all, such a system must be able
to decide, at each moment, which task should be executed based on its
criticality level.

4. Virtualization of real-time systems

In this Section we address the virtualization of real-time systems.
First, we present and discuss the specific RTOS requirements and char-
acteristics, followed by a review of several system virtualization tech-
nologies, with a focus on the challenges introduced by virtualization
of RT execution environments. Finally, the application of virtualization
techniques to cyber–physical systems will be addressed, also identifying
relevant use cases.

4.1. RTOS

To guarantee system determinism and predictability, real-time op-
erating systems are commonly used across CPSs’ control devices. This
type of OS continuously delivers a high level of consistency which
strongly depends on factors like interrupt latency, thread switching
latency, memory allocation and scheduling mechanism. These assume
a relevant role in the architecture of RTOS and allow them to present
stable bounded output latencies.

Well-known open source RTOS include eCOS, FreeRTOS, 𝜇C/OS-II,
rika3, as well as some descendants of the L4 microkernel family (such
s FIASCO/L4Re or seL4). Also, Xenomai (Cobalt) allows a general-
urpose Linux distribution to be transformed into a RTOS by means
f a co-kernel. The same happens with the Real-Time Linux project
hen applying the Preempt_RT kernel patch, which is often mentioned

n the literature. For instance, Wang et al. [5] showed how to improve
he latency of a vanilla Linux by using RT-Linux, making it suitable
or real-time performance. After a brief description on the architecture
f RT-Linux kernel principles, the authors explained how to patch
general-purpose Linux distribution — Ubuntu 18.04.1. Using the

yclictest tool, some tests were performed to measure the CPU latency
hile having a different number of threads running in parallel. By

omparing the results obtained from a vanilla installation and from
RT-Linux patched installation, it was concluded that the real-time

erformance can be improved by applying the RT-Linux patch.
Within commercial RTOSs, one can mention QNX and VxWorks as

xamples of a long list of existing products [6]. Serino and Cheng [7]
resented a brief theoretical comparison between some of these RTOSs.
pecial attention is paid to the main differences between general pur-
ose operating systems (GPOS) and RTOS. Kernel differences are dis-
ussed, focusing on the preemption capability, and distinct scheduling
echniques used by the two types of systems are explained (e.g., round
obin, first-in-first-out, rate-monotonic and earliest-deadline-first). The
riority inversion issue is also addressed and some solutions are pre-
ented, such as priority inheritance, priority ceiling, priority remapping
nd priority exchange. The merge between GPOS and RTOS using tech-
iques like patched kernels or multi-kernels is also discussed. Lastly, an
ntroduction on worst-case execution time tools is provided, followed
5

y a suggestion to further explore multicore RTOS.
The evolution of microprocessors brought multicore architectures
o real-time devices, which raised another challenge for RTOSs: how
o get the most out of all available cores in a multicore environment
ithout affecting RT requirements, especially in HRT scenarios. Static
llocation of tasks to specific cores is often used to guarantee that
RT requirements are achieved. However, this technique may reduce
erformance when it comes to taking advantage of the overall installed
rocessing power. On the other hand, full core migration allows the
cheduler to relocate tasks at arbitrary times between cores, thus taking
ull advantage of all the available cores. Yet, core migration can also
nduce a considerable overhead, thus affecting the predictability of the
ystem and leading to potential failure of HRT deadlines. This challenge
s the subject of multiple research efforts, such as those carried out by
affeck et al. [8] and Gsänger [9], that have concluded that adequate

echniques schedulers help dealing with multicore environments in an
fficient way.

Another essential factor to ponder when dealing with RTOS is that,
egardless of how good the OS is, if the software being used on top
f it has not been programmed according to the strict specifications
o correctly function in a real-time mode, the whole system will likely
erform worst than expected.

.2. Virtualization

One of the most relevant aspects of virtualization is the ability
o abstract from the underlying hardware, thus allowing to share
hysical resources among different systems, in order to create more
ecure, dynamic, and flexible infrastructures. Another relevant feature
s how easy it is to replicate virtualized instances. In a context of
igital industry transformation, virtualization assumes an even greater
reponderance for leveraging the creation and usage of digital twins by
ccelerating the replication of the manufacturing process, in part or as
whole.

Virtualization technologies encompass several domains [10], of
hich system virtualization is the more relevant to the scope of this
aper. System virtualization is often seen as the ability to create
ultiple virtual systems within a single physical system. These virtual

ystems are independent from each other, although hosted by the
ame hardware. Hardware resources – such as CPUs, memory, disks
r network interfaces – can be shared among or allocated to spe-
ific virtual systems, according to the desired cost-performance ratio.
ardware-assisted virtualization support in commodity architectures
such as Intel VT and AMD-V for x86, or ARM virtualization exten-

ions – have become commonplace in modern CPUs. Such extensions
ptimise the operation of hypervisors and virtualized operating sys-
ems, eliminating the associated overhead of running a guest OS in

non-privileged ring [10]. Even the emerging open standard RISC-
architecture contemplates hardware-assisted virtualization through

ts hypervisor extension (H-Extension) [11]. The next subsection will
resent the topic of virtualized execution environments into more
etail.

.3. From hypervisors to containers

Regarding software-based support for virtualized execution environ-
ents, there are three distinct approaches that can be used: type 1
ypervisor, type 2 hypervisor, and container-based.

As observed in Fig. 6, the biggest difference between type 1 hy-
ervisors and type 2 hypervisors is the existence, in the latter, of an
xtra abstraction layer (host operating system) between the hardware
nd the hypervisor. Consequently, some resources become unavailable
o the virtualized systems (guest OSs) since they are allocated to the
ost OS. In some processor architectures, it may also cause virtualized
ystems to run in a ring farther away. This implies that there are
arger overheads derived from the existence of that extra layer. These
irst two approaches already achieved a considerable level of maturity



Microprocessors and Microsystems 99 (2023) 104848R. Queiroz et al.
Fig. 6. Software-based virtualization — source [12].
and are widely used. While type 2 hypervisors are commonly used in
personal computers where factors such as performance are neglected at
the expense of other valences, type 1 hypervisors are commonly used
in the infrastructure backbone, where performance requirements are
higher and remote access is standard. In this paper we specifically focus
on type 1 hypervisors.

General-purpose off-the-shelf type 1 hypervisors are usually de-
signed to favour overall throughput, favouring techniques such as over-
commitment at the cost of determinism. On the other hand, specialised
real-time hypervisors focus on the determinism and predictability of the
entire system — for instance limiting the number of supported virtual
machines to existing physical resources, often allocated by means of
static partitioning.

Several type 1 solutions for real-time virtualization have been pro-
posed by the research community, such as BlueVisor [13], which
aims at the virtualization for many-core embedded systems, and RTA-
HVR [14], that is tailor-made to fit hard real-time automotive require-
ments and for hardware without virtualization support. ACRN [15] is
also a noteworthy open source hypervisor that focuses on the require-
ments of the embedded IoT development. Nevertheless, at least some of
the general-purpose hypervisors, like Xen Project [16] and KVM [17],
a Linux kernel component system, are also able to accomplish some RT
requirements when properly configured, as shown by Zhang et al. [18]
and Abeni and Faggioli [19].

Despite being the most recent approach, container-based virtualiza-
tion has its roots in the creation of the chroot system call in the late
1970s. This may have been the first step regarding process isolation by
means of changing the root directory of a process and its children to a
new location in the filesystem. In early 2000 the FreeBSD Jails feature
was introduced, to enable the compartmentalisation of a FreeBSD
system in independent micro-systems and the assignment of a different
IP address to each one. Later, it was transposed to the Linux OS through
a kernel patch. In 2006, Google introduced ‘‘process containers’’ that
allowed some isolation, limitation, and accounting of resources. Later,
this would be renamed as ‘‘control groups’’ (cgroups). Two years later,
LXC appears as the first container manager, and in 2013 the Docker
framework, for creating and managing containers, was presented.

Containers have the potential of significant performance improve-
ments in terms of boot time, scalability and footprint [20], by using
kernel features to create isolated environments. Unlike hypervisors,
this approach shares the same underlying OS kernel among all con-
tainers, which makes it more lightweight and optimises the allocation
of resources. However, in doing so, it does not benefit from the vir-
tualization capabilities offered by type 1 hypervisors. To counter this
limitation, its application in the IT environment is usually done in a
second layer, that is, on top of a first layer consisting of a type 1
hypervisor. This solution has demonstrated an interesting potential in
6

the IT environment. However, in a real-time context, it implies an extra
layer that may add extra latency. Also, studies such as those carried out
by Manco et al. [21] argue that this vision is not so straightforward,
since it is possible to use a type 1 hypervisor (and benefit from all
its advantages, such as hardware isolation) and still be able to have
lightweight VMs capable of achieving considerably better performances
than containers — this approach was adopted by Amazon with its
Firecracker hypervisor for microVMs [22].

4.4. The challenges of virtualizing RT workloads

This section discusses the specific challenges involved in terms
of RT workload virtualization, with a focus on isolation, scheduling
mechanisms and their impact on determinism and predictability.

4.4.1. Isolation
Any virtualization process applied to real-time systems has to en-

sure that predictable deterministic real-time performance will be kept.
This implies guaranteeing not only spatial isolation but also temporal
isolation. As already mentioned, techniques like static partitioning
virtualization are used for this purpose. Hardware resources such as
RAM and CPU are isolated and assigned to a single system, opposed to
over-commitment techniques, thus avoiding unnecessary overheads.

However, ensuring complete isolation of resources in increasingly
complex systems is not trivial. For example, multi-core systems tend
to share the memory among all CPUs and, as discussed by Capodieci
et al. [23], interference may happen at all levels of the memory
hierarchy. This means that although it is possible to statically parti-
tion RAM, there are still shared elements that may be susceptible to
contention when exposed to heavy loads, such as the memory cache
or bus. The existence of such contention is also shown by Danielsson
et al. [24], that tested the Jailhouse RT hypervisor [25] in a multi-
core environment to evaluate its CPU, cache and memory bus isolation
capabilities. Although the authors concluded that there is in fact con-
tention at the memory bus and L2 cache level, they also mention that
the overall performance, considering a heavily loaded shared resource
environment, was at least as good as a bare-metal Linux installation.

Multiple solutions, based on hardware or software, have been pro-
posed to improve those weaknesses [26]. Cache colouring seems to be
the one gaining more traction in the context hypervisors’ performance.
Xen Project and Jailhouse ARM versions are some of the hypervisors
that are already compatible with such technique, as successfully shown
in the European projects I-MECH [27] and Hercules [28], respectively.
Xvisor [29] and Bao [30] also presented positive results while using
cache colouring. Other approaches were also proposed to improve
isolation and guarantee real-time requirements. Pinto et al. [31] pre-
sented a lightweight hypervisor (LTZVizor) based on ARM TrustZone, a



Microprocessors and Microsystems 99 (2023) 104848R. Queiroz et al.

i
p

hardware-assisted security extension for ARM processors. This technol-
ogy was exploited to leverage real-time virtualization by enabling the
virtualization of a physical core in two distinct execution domains – one
designated as secure world, which is a trusted execution environment
(TEE) and was used to run time sensitive tasks, and the other designated
as non-secure world, to run general-purpose tasks – and providing time
and space isolation between these. This approach was also taken into
account by Hua et al. [32]. However, in this case, the authors comple-
mented their approach by also applying ARM virtualization extensions
(VE), thus increasing the virtualization capabilities and enabling each
guest with an isolated guest TEE with the same isolation capabilities
and security as the physical secure world.

I/O sharing between multiple VMs cannot be left out when ad-
dressing isolation to maintain a predictable deterministic real-time
performance, since it also presents considerable challenges, especially
when global memory is being used in the path to I/O access. Spe-
cific hardware-assisted mechanisms can also be used in this case for
controlling the I/O-related memory contention. For example, Borgioli
et al. [33] addressed this problem by means of hardware regulators that
control the number of memory transactions permitted from each device
in a given period, thus controlling I/O-related memory interference.
Extensive evaluation showed the proposed solution may perform up to
eight times better. Like other hardware-assisted solutions, this one is
dependent on the type of hardware being used (ARM QoS-400 regu-
lators). However, the trend among the main players in this market is
that they all end up providing equivalent hardware solutions to support
virtualization and its various challenges. Therefore, the important thing
to remember is that there are several ways to reinforce the isolation of
virtualized systems, including hardware-assisted solutions which tend
to deliver better performance for real-time requirements.

It must be stressed that, although static partitioning is one of
the most used techniques to help ensure compliance with real-time
requirements, it is not mandatory. In [34], Li et al. present a real-
time virtualization platform based on a type 1 hypervisor that supports
dynamic reallocation of CPU resources among VMs in runtime, without
over-provisioning resources and guaranteeing SRT performance levels.

4.4.2. Scheduling
Scheduling policies also assume a relevant role in real-time applica-

tions. Partitioning-based scheduling, where each partition gets assigned
strict time frames to ensure the temporal behaviour of each process,
is often applied. Other techniques use a combination of priority and
time-driven scheduling (adaptive time-partitioning scheduling), where
the priority of each thread is also considered [35]. Some hypervisors
that exploit these techniques to provide real-time assurances are PikeOS
(rooted in the L4 [36] family of micro-kernels) [37], QNX [38] and
XtratuM [39].

A hypervisor may support several schedulers, just one or none. For
example:

• the Xen Project currently supports both general purpose and
real-time schedulers: Credit, Credit2, Real-Time-Deferrable-Server
(RTDS), ARINC 653 and NULL;

• KVM supports the Completely Fair Scheduler (CFS), as well as the
SCHED_FIFO, SCHED_DEADLINE, and SCHED_RT;

• the VMware vSphere hypervisor supports two distinct versions of
the Side Channel Aware scheduler, in addition to its default one;

• XtratuM only supports a fixed cyclic scheduler based on ARINC
653 specifications;

• Jailhouse and BAO do not include any scheduler, since there is
no support for over-commitment. Both implement a one-to-one
mapping of virtual to physical core, meaning that each VM uses
its own physical core, thus nullifying the need for a scheduler.

Since there are several schedulers, choosing one that best suits the
ntended function is essential. Moreover, as shown in [40], it is also
7

ossible to optimise a scheduler taking into account the architecture
of the processor on which it will be used. Specific configurations, like
the scheduling time per slice, may also be tuned to achieve better
RT performance. However, as shown by Tellabi and Ruland [41],
the results cannot be extrapolated between different hypervisors or
schedulers.

4.5. Virtualization applied to cyber–physical systems

Recent research on the topic of real-time workload virtualization
applied to cyber–physical systems has validated the claim that both
technologies can be reconciled in an effective way.

Hofer et al. [42] analysed the possibility of migrating real-time
industrial control applications from dedicated hardware to virtualized
servers with shared resources, aiming for an IaaS approach. Three
distinct analysis were made. First, offline tests take in consideration
different configuration options. Using a type 1 hypervisor and three
distinct host profiles – a standard Linux installation, another with the
PREEMPT_RT kernel patch and the other with Xenomai 3 kernel patch
– multiple tests were executed to measure the CPU latency. Results
are presented for each of the twelve different tweaks made in each
of the hosts. Second, a hardware comparison was performed using the
most favourable configuration previously identified, comparing CPU
latency while using multiple hardware options offered by Amazon Web
Services. Observed results lead the authors to conclude it is viable
to migrate real-time applications to an IaaS solution. Finally, using a
test-run of a Balena container, latency tests were executed inside a
container. Observed results further demonstrate the feasibility of such
migration.

Cinque et al. [43] presented an architecture for allowing industrial
mixed-criticality systems to coexist on the same hardware and for
enabling large-scale scalability based on container virtualization. They
implemented real-time containers with distinct criticality levels. These
are meant to run fixed-priority hard-real-time periodic tasks with tem-
poral separation. This solution combines Docker over an Ubuntu Linux
patched with the RTAI real-time co-kernel extension. After carrying
out a set of exhaustive tests using representative task sets, the authors
confirm the feasibility of the proposed concept. It is noteworthy that a
preemptive fixed priority task scheduling was chosen.

Bock et al. [44] discuss the merging of CPS and IoT in the context
of Industry 4.0, proposing Xvisor-RT, a real-time embedded hypervisor
that supports multiple cores and multiple VMs with real-time tasks.
Xvisor-RT is based on the Xvisor type 1 hypervisor. By focusing on
enabling a scheduling mechanism to deal with a set of virtual pro-
cessors (vCPU) with real-time constraints on a multi-core embedded
system, it is able to choose the best candidate task and vCPU at each
moment. To determine the optimal scheduling mechanism, the authors
analysed multiple combinations of system-level schedulers with task-
level schedulers and took into consideration the load of the vCPUs
and the number of physical CPUs scheduled. The authors were able to
select a set of scheduling algorithms, which allowed them to execute
two distinct real-time applications without no deadline misses, thus
validating the usage of virtualization in this context. As stated in the
paper, the presented results may help others to shorten the path to
choose the best set of scheduling algorithms to other scenarios.

Yang et al. [45] discussed how to achieve hard real-time perfor-
mance while keeping the rich Linux feature set. The authors created
a compounded real-time operating system (cRTOS) to enable richer
features in real-time operating systems, and to increase the efficiency,
usability, and maintainability of the development process. The system
consists of a real-time type 1 hypervisor (Jailhouse) that hosts two
distinct realms, a normal Linux realm referred to as general pur-
pose operating systems (GPOS) and a hard-real-time realm of a swift
RTOS (sRTOS). The first runs an Ubuntu Linux with a vanilla or a
PREEMPT_RT patched kernel and is responsible for the rich features,
while the latter runs a Nuttx x86 ported version and is responsible for

real-time tasks. It is concluded that the proposed system can achieve



Microprocessors and Microsystems 99 (2023) 104848R. Queiroz et al.
hard-real-time performance while delivering Linux rich features with-
out requiring any kernel modification. Thus, it is possible to reduce the
complexity and cost of developing real-time applications incorporating
rich features since developers can use the same toolchains and executa-
bles as with Linux. The outcome of this research not only validates the
usage of virtualization in hard real-time environments, but also goes a
step further by introducing new capabilities that may be explored in
the context of mixed-critical systems and Industry 4.0.

Scordino et al. [46], under the I-MECH project [27], presented a
modular real-time platform for IACS based on a type 1 hypervisor
and using only open-source components. According to the authors, the
developed architecture complies with requirements such as: working
on COTS x86 platforms; supporting EtherCat master functionalities and
communications; and being capable of running multiple OSs in parallel,
including unmodified versions of Microsoft Windows and RTOSs and
supporting resources partitioning. After describing with some detail the
options taken regarding each component, a general evaluation based
on experimental results is presented. This highlights multiple parame-
ters regarding the hypervisor, such as introduced overhead and cache
isolation capabilities. Techniques to improve and prevent interference
between shared resources are also discussed. It is concluded that type
1 hypervisor-based virtualization can be used to create innovative and
flexible infrastructures while still achieving real-time requirements as
demanded by IACS.

Since I/O is one of the essential components of cyber–physical sys-
tems, its virtualization is of utmost relevance, namely in multi-/many-
core environments where complicated I/O access paths and resource
management is conducive to increase latency and timing variance of
I/O operations. Jiang et al. [47] use an automotive case study to test
their virtualization framework (I/O-Guard), which introduces a novel
system architecture focused on multi-/many-core I/O virtualization.
This modular framework relies on a new hypervisor micro-architecture,
mostly supported by hardware-assisted virtualization, that enables ran-
dom accesses of I/O operations and task prioritisation. It also relies
on a two-layer scheduler (local and global) supporting preemptive
scheduling methods (earliest deadline first policy) with guaranteed
real-time performance, and on device-specific low-level I/O drivers
integrated into the hardware. The presented architecture introduces
several improvements when empirically compared with a real-time
patched version of Xen hypervisor. It achieved good results in terms
of I/O performance and throughput, with low levels of missed safety
and function tasks due to the capability of optimising I/O access paths
and resource management throughout the system.

Casini et al. [48] also highlighted the importance of I/O virtualiza-
tion for achieving certification requirements of safety–critical systems.
After identifying the need to analytically bound the virtualization
latencies for providing off-line guarantees, the authors focused on three
different I/O virtualization modelling techniques that are not depen-
dent on specific hardware nor rely on custom scheduling algorithms
and, as so, can be applied in standard inter-VM communications present
in most hypervisors: Pass-Through I/O, I/O Paravirtualization with I/O
VM, and I/O Para-Virtualization with I/O VM and Shared Buffers. These
are presented in detail and evaluated by means of two experimental
studies that take into consideration the following metrics: response
time, data delivery latency and input processing latency. The outcome
results and the trace that is made to the sources of delay allow to
bound the latency coming from the I/O virtualization and provide a
deep insight on how to comply with timing constraints.

5. Evaluation of COTS hypervisors for real-time scenarios

Considering the aforementioned developments in terms of COTS and
RT-specific virtualization technologies, it still remains the question of
understanding to which extent general-purpose off-the-shelf hypervi-
sors are capable of hosting RT-constrained guest VMs. While not being
designed to deal with HRT workloads, the introduction of specific VM
8

Fig. 7. System profiles architecture.

profiles and/or specific fine-tuning may fulfil requirements of several
RT targets, whose extent can only be assessed by means of experimental
evaluation.

Therefore, this section presents the results of the experimental
evaluation that was conducted to understand the performance impact
when using COTS hypervisors and how feasible the usage of this type of
hypervisors is in scenarios with real-time constraints. For this purpose,
the evaluation effort will focus on assessing the latency and efficiency
penalties associated to these environments, in comparison with parti-
tioning techniques. First, the analysis of a GPOS use case is introduced
to provide a reference baseline for comparison with RTOS payloads,
which are to be next evaluated. The rationale for this approach is
to consider both GPOS and RTOS payloads in COTS hypervisors, in
order to understand how the same hypervisor platform can provide RT
guarantees for RT guests, with some eventual optimisations. To better
clarify this, several modifications were introduced in the paper.

5.1. Testing scenarios

Four system profiles have been defined for experimental analysis
purposes (Fig. 7). The first, based on a bare metal Ubuntu Server 20.04
OS environment, with kernel version 5.4.0-86-generic, was used as
baseline. Each of the other three profiles consisted of distinct type 1
hypervisor hosts — selected from the top four list according to the
2019 market share [49]. The hypervisors used in this study will be
designated by a generic reference: hypervisor A, B, and C, instead
of their name. This option is due to legal constraints, since these
commercial hypervisors have product EULAs that restrict or strongly
limit the publication of benchmark studies. Nevertheless, we believe
this is not a limiting factor, since the purpose of this article is not to
benchmark specific implementations but rather to assess the general
panorama of commercial off-the-shelf hypervisors regarding real-time
workload support.

Three virtual machines running similar versions of the above-
mentioned Ubuntu Linux were installed as guests in each hypervisor.
The first hosted the RT task emulation, and the second and third
ones were used for parallel workload (as explained later). Two vCPUs
were allocated to each VM, as well as 4 GB of RAM for the first
VM and 6 GB for the two other VMs, thus using all the resources
available in the hosting machine. Also, configuration settings to enable
the static allocation of resources, like the CPU cores and RAM, were
applied to the first VM, as well as the configuration of the VM as
highly sensitive to latency, thus granting each virtual CPU exclusive
access to a physical core and optimising the schedule delay for latency
sensitive applications (when such options were made available by the
hypervisor). Furthermore, the usage of multiple C-states was disabled
through both the BIOS options and OS’s kernel configurations, as well
as hyperthreading and other dynamic power management options, due
to their negative impact on latency and determinism. The underlying
hardware consisted of an Asus PRIME H410M-A motherboard, with an
Intel® Core™ i5-10400F 2.9 GHz CPU with 6 cores, 16 GB DDR4 RAM
running at 2666 MHz, and two SATA3 solid-state drives.



Microprocessors and Microsystems 99 (2023) 104848R. Queiroz et al.
Table 2
Testing scenarios.

System profile Testing profile 1st VM Cyclictest Stress RT tasks core affinity 2nd and 3rd VM

1 ✘ ✓ ✘ ✘ ✘

2 ✘ ✓ ✘ ✓ ✘

3 ✘ ✓ ✓ ✘ ✘
Baseline 1

4 ✘ ✓ ✓ ✓ ✘

1 ✓ ✓ ✘ ✘ ✘

2 ✓ ✓ ✘ ✓ ✘

3 ✓ ✓ ✓ ✘ ✘

4 ✓ ✓ ✓ ✓ ✘

5 ✓ ✓ ✓ ✘ ✓

Hypervisor 2, 3, 4

6 ✓ ✓ ✓ ✓ ✓
5.2. Testing procedures

Conducted tests consisted in emulating a RT task and measuring the
response latency of its thread by means of the high-resolution testing
tool Cyclictest [50]. The thread was clocked at 10 ms, and a FIFO
scheduling policy was used, with the thread being assigned the highest
priority.

Measurements were performed in distinct testing environments,
some of which had best effort concurrent threads competing for the
machine resources. For this purpose, the workload generator tool
stress [51] was used. A total of 20 simultaneous workers were instan-
tiated (10 exercising the CPU by spinning on square root function, and
10 spinning on malloc/free operations with 64 MB blocks), which was
enough to overload the available cores. Each test had a duration of 8 h,
which led to over 2.5 million samples per test. The dataset generated
by this work is available in [52].

The profiles of the testing environments – which were applied to
each of the system profiles as detailed in Table 2 – are described below:

• Profile 1 — RT task executed without core affinity or concurrent
workload;

• Profile 2 — RT task executed with core affinity and without
concurrent workload;

• Profile 3 — RT task executed without core affinity and with
concurrent workload;

• Profile 4 — RT task executed with core affinity and with con-
current workload (RT task and concurrent workload running in
distinct cores);

• Profile 5 — Three VMs running simultaneously. The first execut-
ing the RT task and the others running concurrent workloads. No
core affinity was used for the RT task.

• Profile 6 — Three VMs running simultaneously. The first execut-
ing the RT task and the others running concurrent workloads.
Core affinity was used for the RT task.

Notice that, when mentioning core affinity one is referring to the task
being allocated to a specific vCPU inside the VM. In turn, as previously
indicated, the physical cores are statically allocated to the VM.

The first four testing profiles (TP) were defined in a way which
allowed analysing the performance impact of each hypervisor when
directly compared to the bare metal baseline system profile. This
can be seen as a representation of the vPLC. TP1 and TP2 represent
the scenario where a vPLC only executes an RT task. In TP3 and
TP4 the RT task must compete for resources against other workloads,
representing a scenario that optimises the use of resources just like a
mixed-criticality system. TP2 and TP4 intend to provide some infor-
mation about the effectiveness of using the core affinity technique to
achieve a more deterministic system. Profiles 5 and 6 allowed assessing
the efficiency of the isolation techniques used by the hypervisors.
This should clarify if it is possible to run multiple VMs in the same
hypervisor without any sort of interference between them, which could
compromise the RT task.
9

Fig. 8. Hypervisor overhead — TP1&2.

5.3. Obtained results and discussion

This subsection presents and discusses the results of the conducted
experiments. First, we discuss results obtained with general-purpose
operating systems (GPOS), followed by the results measured with Real-
time Operating Systems.

5.3.1. GPOS
The results obtained in the various tests are presented below. Ta-

ble 3 depicts obtained results, within a 95% confidence interval.
The testing profiles TP1 and TP2 present the best results throughout

all system profiles (SP). Although it is possible to identify a slight
overhead when using any of the hypervisors (Fig. 8), the measured
latency is quite low, as well as its standard deviation.

The best results are achieved by hypervisor A (SP1), which pre-
sented a 0.007 ms average latency, a 0.001 ms standard deviation and
a maximum jitter of 0.004 ms. The worst results were observed with
hypervisor C (SP3), with average latency of 0.025 ms and a maximum
jitter of 0.007 ms. Despite these results being quite interesting and
relatively close to the baseline system, one must bear in mind that these
testing profiles did not include concurrent workloads, which is the most
likely scenario when using hypervisors.

Testing profiles TP3 and TP4 already incorporate parallel workload.
Profile TP3 obtained the worst performance. Not only is the mean
latency the highest (for three out of four system profiles), but also the
dispersion of results is the more pronounced among all of them, which
translates into the highest maximum jitter. These results are most likely
due to the core swapping of the RT task since there was no sort of core
affinity defined and multiple workers of stress were struggling for the
same resources at the same time.



Microprocessors and Microsystems 99 (2023) 104848R. Queiroz et al.
Table 3
Laboratory results with GPOS.

System profile Testing profile Lower wisker Lower quartile Median 𝜇 𝜎 Upper quartile Upper wisker Max jitter

1 0.002 0.002 0.002 0.002 0.000 0.003 0.003 0.001
2 0.002 0.002 0.002 0.002 0.000 0.003 0.003 0.001
3 0.005 0.007 0.009 0.037 0.146 0.012 0.572 0.567#1 Baseline

4 0.002 0.004 0.005 0.005 0.002 0.006 0.007 0.005

1 0.005 0.006 0.007 0.007 0.001 0.007 0.009 0.004
2 0.005 0.006 0.007 0.007 0.001 0.008 0.009 0.004
3 0.006 0.008 0.009 0.030 0.111 0.011 0.464 0.458
4 0.005 0.007 0.007 0.008 0.001 0.008 0.010 0.005
5 0.007 0.009 0.011 0.011 0.003 0.013 0.020 0.013

#2 Hypervisor A

6 0.007 0.010 0.012 0.013 0.004 0.014 0.022 0.014

1 0.009 0.010 0.011 0.011 0.002 0.012 0.016 0.007
2 0.009 0.011 0.012 0.012 0.003 0.013 0.017 0.008
3 0.009 0.013 0.016 0.040 0.120 0.018 0.552 0.542
4 0.011 0.013 0.016 0.016 0.013 0.018 0.024 0.013
5 0.013 0.023 0.030 0.037 0.214 0.038 0.051 0.038

#3 Hypervisor B

6 0.018 0.025 0.031 0.029 0.187 0.040 0.055 0.037

1 0.019 0.022 0.023 0.023 0.005 0.025 0.026 0.007
2 0.021 0.024 0.025 0.025 0.015 0.015 0.027 0.006
3 0.013 0.017 0.019 0.039 0.105 0.022 0.372 0.359
4 0.023 0.027 0.030 0.031 0.006 0.034 0.040 0.018
5 0.026 0.040 0.051 0.053 0.095 0.057 0.074 0.049

#4 Hypervisor C

6 0.032 0.042 0.053 0.056 0.090 0.059 0.073 0.041
Fig. 9. Hypervisor performance — TP3.

Comparing the results obtained when using hypervisors with those
with the baseline system (Fig. 9), it is possible to conclude that the
decrease of performance identified is similar for both cases. Moreover,
the system profiles using hypervisors presented a better overall perfor-
mance in these tests than the baseline profile itself, which had higher
maximum jitter and 𝜎. Hypervisor A (SP2) was even able to achieve
not only lower jitter and 𝜎, but also lower mean latency.

The absence of core affinity meant that the baseline system had at
its disposal all the six cores. It is possible that the cost of continuously
swapping the threads between all the cores resulted in an overall worst
performance. Although the existence of more cores is normally a posi-
tive factor (specially regarding throughput capacity), when considering
processing latency it may actually lead to lower performance. Each
virtual machine was limited to two cores.

When analysing the results of TP4 tests (Fig. 10), an improvement
across all systems is noticeable. In TP4 distinct tasks were assigned to
distinct cores, which means the RT task and the concurrent workload
were executed in distinct cores, leading to better results. Not only the
latency dropped consistently in all the tests (between 20% and 80%),
achieving values in the order of 0.008 ms, but also 𝜎 improved consid-
erably, decreasing more than 89% in all tests and reaching 0.001 ms.
10
Fig. 10. Hypervisor performance — TP3&4.

In line with these values, the maximum jitter also went down (between
94% and 99%), staying as low as 0.005 ms.

As in the previous testing profiles, the measured latency when using
COTS hypervisors and when using the baseline system followed a sim-
ilar trend. That is, when the baseline profile latency results increased,
decreased, or remained similar (comparing to the previous testing)
so did the results obtained with the hypervisors. This means that the
trend of the results has not been negatively impacted by the usage of
hypervisors. However, in most cases, the values themselves reveal a
slight overhead originated by the usage of the COTS hypervisors. Yet,
the outcome results of TP3 and TP4 shown that a COTS hypervisor can
be used in some situations without a negative impact.

The goal for the testing profiles TP5 and TP6 was to analyse the
effectiveness of isolating multiple virtual machines running at the same
time. Just like in the previous testing profiles, a VM executed the RT
task. However, in these cases, the concurrent workload was executed
in two other VMs that ran in parallel. Just like TP4 (although with
a different approach), this should guarantee the isolation of the cores
running the RT task and the remaining workload.



Microprocessors and Microsystems 99 (2023) 104848R. Queiroz et al.
Fig. 11. Hypervisor isolation effectiveness — TP4&5&6.

If observed latency was similar to that of TP4, one could conclude
that there was a total isolation of the VMs. However, that is not the
case. The obtained measurements show that the isolation techniques
of the COTS hypervisors are not completely effective, as the mean
latency increased in both testing profiles (Fig. 11). Even though a static
allocation of the CPU cores and RAM was made, this was already to be
expected, since there are always shared components such as the cache
memory of the CPU and the internal communication buses.

Summing up, the tested hypervisors show distinct results in terms of
latency and dispersion. The results of Hypervisor A stand out since they
are very close to the non-virtualized baseline system, achieving even
better results in some cases. Nevertheless, the remaining hypervisors
also attained very interesting results. Despite the variability of some
results, according to different scenarios and the limited effectiveness
of the isolation techniques used by COTS hypervisors, when observing
the order of magnitude of the results it is concluded that they are com-
patible with a wide range of IACS application scenarios. Considering
the results from the testing profile TP5 – the one that comes closer
to a realistic scenario when using a hypervisor – it is observed that
the average latency stays between 0.011 ms and 0.053 ms, and the
maximum jitter between 0.013 ms and 0.049 ms. Such results fit most
of the industrial systems latency and jitter requirements presented in
Table 1. However, it is necessary to consider that this table presents the
end-to-end values, that is, the sum of all latencies present throughout
all the process. In our tests we only consider the processing latency,
meaning that a safety margin has to be considered to accommodate
other sources of delay.

5.3.2. RTOS
Despite the previous tests showing very promising results, it is not

clear if the observed results were also conditioned by using a GPOS,
in addition to the impact of using COTS hypervisors. Thus, similar
tests were conducted using a RTOS instead. Xenomai and Preempt_RT
were considered for performance and compatibility reasons. Both have
their pros and cons, as discussed in [53]. Therefore, the chosen RTOS
was Xenomai 3.1 (Cobalt variant), which was installed over the same
version of Ubuntu being used in the previous tests. As seen in Table 4,
the latency values dropped significantly. This means that previously
obtained results were indeed affected by the usage of a GPOS.

Focusing again on TP5 (Fig. 12), one can identify a noticeable per-
formance improvement throughout all the system profiles when using
a RTOS. Nonetheless, the results when using a RTOS still consolidate
what was concluded above.
11
Fig. 12. Hypervisor performance with RTOS — TP5.

In order to determine the predictability of the system over time, the
distribution of results after 1 h, 2 h, 4 h and 8 h was also analysed. As
shown in Table 5, all system profiles presented a very stable behaviour
over time, regarding average latency. The standard deviation also
remained constant in SP2 and had a maximum fluctuation of 0.007 ms
and 0.013 ms in SP3 and SP4, respectively. These results show that the
predictability of such systems is quite high and reinforces the feasibility
of using COTS hypervisors in some RT environments.

6. Conclusion and future work

COTS hypervisors have shown considerable evolution over the last
years. The existence of services with stricter latency requirements is to-
day a factor that the virtualization players are aware. This is confirmed
by the presence of specific settings for low latency VMs in some of the
analysed COTS hypervisors.

Considering the conducted experiments regarding the CPU process-
ing latency, we confirmed the ability of type 1 COTS hypervisors to
fulfil the requirements of a wide range of real-time systems. However,
the use of such hypervisors in hard real-time systems, with stricter
latency and jitter requirements, may not be feasible. Also, one cannot
assume that any COTS hypervisor can be used in such environments. As
shown by our experimental evaluation, not all hypervisors behave the
same way when exposed to the same conditions. A small behaviour dif-
ference between them can result in a significant negative performance
impact in a context of hard real-time systems which, in turn, may lead
to serious cascade effects in the physical processes those control.

One of the tested hypervisors showed very homogeneous results,
apparently confirming its ability to handle even some of the most
demanding systems. However, they all showed that their VMs isolation
capabilities are not completely reliable. The degree of disturbance
that one VM can cause to the performance of another has not been
analysed in detail. In a future study, it would be interesting to quantify
the maximum degree of disturbance one VM can cause in the entire
system, and its cause. For that, it would be necessary not only to use
the RAM and CPU memory overload, but also to generate intensive
peripheral traffic (e.g. network interface, disk drive) to understand to
what extent the interrupts generated by those components can affect
the performance of adjacent VMs.

It would also be interesting to determine the best performance
that can be achieved by type 1 hypervisors, namely using RT-specific
hypervisors. Unlike a COTS hypervisor, RT-specific hypervisors have as
main objective to guarantee the determinism and predictability of the
entire system.



Microprocessors and Microsystems 99 (2023) 104848R. Queiroz et al.
Table 4
Laboratory results with RTOS.

System profile Testing profile Lower wisker Lower quartile Median 𝜇 𝜎 Upper quartile Upper wisker Max jitter

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.001 0.002 0.003 0.003 0.001 0.004 0.005 0.004#1 Baseline

4 0.000 0.001 0.001 0.001 0.001 0.002 0.003 0.002

1 0.002 0.002 0.002 0.002 0.000 0.002 0.003 0.001
2 0.002 0.002 0.002 0.002 0.000 0.002 0.003 0.001
3 0.002 0.003 0.003 0.003 0.001 0.004 0.005 0.003
4 0.002 0.002 0.002 0.003 0.000 0.003 0.004 0.002
5 0.003 0.004 0.004 0.005 0.001 0.005 0.008 0.005

#2 Hypervisor A

6 0.003 0.004 0.005 0.005 0.002 0.006 0.009 0.005

1 0.005 0.005 0.006 0.006 0.017 0.007 0.008 0.003
2 0.004 0.007 0.007 0.007 0.001 0.008 0.009 0.005
3 0.004 0.005 0.006 0.007 0.005 0.008 0.010 0.006
4 0.005 0.007 0.008 0.008 0.024 0.009 0.012 0.007
5 0.008 0.012 0.017 0.021 0.139 0.022 0.034 0.027

#3 Hypervisor B

6 0.012 0.018 0.022 0.024 0.106 0.027 0.037 0.025

1 0.005 0.006 0.006 0.007 0.005 0.006 0.009 0.004
2 0.005 0.006 0.006 0.006 0.002 0.006 0.007 0.002
3 0.005 0.006 0.007 0.011 0.011 0.009 0.049 0.045
4 0.006 0.007 0.007 0.008 0.004 0.008 0.012 0.006
5 0.008 0.013 0.021 0.025 0.091 0.027 0.049 0.041

#4 Hypervisor C

6 0.014 0.020 0.026 0.031 0.088 0.032 0.049 0.036
Table 5
Latency over time (TP5 in ms).

System profile Hours Lower wisker Lower quartile Median 𝜇 𝜎 Upper quartile Upper wisker Max jitter

1 0.003 0.004 0.004 0.005 0.001 0.005 0.008 0.005
2 0.003 0.004 0.004 0.005 0.001 0.005 0.008 0.005
4 0.003 0.004 0.004 0.005 0.001 0.005 0.008 0.005#2 Hypervisor A

8 0.003 0.004 0.004 0.005 0.001 0.005 0.008 0.005

1 0.007 0.013 0.017 0.021 0.129 0.022 0.034 0.027
2 0.007 0.012 0.017 0.021 0.131 0.022 0.034 0.027
4 0.007 0.012 0.017 0.021 0.142 0.022 0.034 0.027#3 Hypervisor B

8 0.007 0.012 0.017 0.021 0.138 0.022 0.034 0.027

1 0.008 0.013 0.021 0.025 0.085 0.027 0.049 0.041
2 0.008 0.013 0.021 0.025 0.089 0.027 0.049 0.041
4 0.008 0.013 0.021 0.025 0.092 0.027 0.049 0.041#4 Hypervisor C

8 0.008 0.013 0.021 0.025 0.090 0.027 0.049 0.041
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data available at doi:10.21227/h7ye-x037

Acknowledgements

This work was partially funded by the National Funds through the
FCT—Foundation for Science and Technology, I.P., Portugal, and the
European Social Fund, through the Regional Operational Program Cen-
tro 2020, within the scope of the project CISUC UID/CEC/00326/2020.
It was also partially co-funded by FEDER, in the context of the Com-
petitiveness and Internationalization Operational Program (COMPETE
2020) of the Portugal 2020 framework, in the scope of Project
Smart5Grid (POCI-01-0247-FEDER-047226).

References

[1] T. Cruz, P. Simões, E. Monteiro, Virtualizing programmable logic controllers:
Toward a convergent approach, IEEE Embed. Syst. Lett. 8 (4) (2016) 69–72,
http://dx.doi.org/10.1109/LES.2016.2608418.

[2] T. Cruz, R. Queiroz, P. Simões, E. Monteiro, Security implications of SCADA ICS
virtualization: Survey and future trends, in: European Conference on Information
12

Warfare and Security, ECCWS, Vol. 15, 2016, pp. 81–100.
[3] T. Bauernhansl, S. Kondoh, S. Kumara, L. Monostori, B. Ka, Cyber-physical
systems in manufacturing, CIRP Ann. - Manuf. Technol. 65 (2016) 621–641,
http://dx.doi.org/10.1016/j.cirp.2016.06.005.

[4] S. Figueroa-Lorenzo, J. Añorga, S. Arrizabalaga, A role-based access control
model in modbus SCADA systems. a centralized model approach, Sensors
(Switzerland) 19 (20) (2019) http://dx.doi.org/10.3390/s19204455.

[5] C. Wang, F. Yang, H. Wang, P. Guo, J. Hou, Improving real time performance
of linux system using RT-linux, J. Phys. Conf. Ser. 1237 (5) (2019) http:
//dx.doi.org/10.1088/1742-6596/1237/5/052017.

[6] Real-time operating systems, 2021, https://www.osrtos.com/ Accessed: 2021-04-
01.

[7] A. Serino, L. Cheng, A survey of real-time operating systems, 2019, pp. 27–65.
[8] P. Raffeck, P. Ulbrich, W. Schroder-Preikschat, Work-in-progress: Migration hints

in real-time operating systems, in: Proceedings - Real-Time Systems Symposium,
Vol. 2019-Decem, 2019, pp. 528–531, http://dx.doi.org/10.1109/RTSS46320.
2019.00056.

[9] H. Gsänger, Dynamic Migration Decisions in Multicore Systems (Ph.D. thesis),
Friedrich-Alexander-Universität, 2020, pp. 27–65.

[10] O. Nagesh, T. Kumar, V. Venkateswararao, A survey on security aspects of server
virtualization in cloud computing, Int. J. Electr. Comput. Eng. 7 (3) (2017)
1326–1336, http://dx.doi.org/10.11591/ijece.v7i3.pp1326-1336.

[11] B. S’a, J. Martins, S. Pinto, A first look at RISC-v virtualization from an embedded
systems perspective, IEEE Trans. Comput. 71 (2021) 2177–2190.

[12] T. Combe, A. Martin, R. Di Pietro, To docker or not to docker: A security
perspective, IEEE Cloud Comput. 3 (5) (2016) 54–62, http://dx.doi.org/10.1109/
MCC.2016.100.

[13] Z. Jiang, N.C. Audsley, P. Dong, BlueVisor: A scalable real-time hardware
hypervisor for many-core embedded systems, in: Proceedings of the IEEE Real-
Time and Embedded Technology and Applications Symposium, RTAS, IEEE,
2018, pp. 75–84, http://dx.doi.org/10.1109/RTAS.2018.00013.

[14] A.K. Sundar Rajan, A. Feucht, L. Gamer, I. Smaili, N.D. M., Hypervisor for
consolidating real-time automotive control units: Its procedure, implications and
hidden pitfalls, J. Syst. Archit. 82 (June 2017) (2018) 37–48, http://dx.doi.org/
10.1016/j.sysarc.2018.01.001.

http://dx.doi.org/10.1109/LES.2016.2608418
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb2
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb2
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb2
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb2
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb2
http://dx.doi.org/10.1016/j.cirp.2016.06.005
http://dx.doi.org/10.3390/s19204455
http://dx.doi.org/10.1088/1742-6596/1237/5/052017
http://dx.doi.org/10.1088/1742-6596/1237/5/052017
http://dx.doi.org/10.1088/1742-6596/1237/5/052017
https://www.osrtos.com/
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb7
http://dx.doi.org/10.1109/RTSS46320.2019.00056
http://dx.doi.org/10.1109/RTSS46320.2019.00056
http://dx.doi.org/10.1109/RTSS46320.2019.00056
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb9
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb9
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb9
http://dx.doi.org/10.11591/ijece.v7i3.pp1326-1336
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb11
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb11
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb11
http://dx.doi.org/10.1109/MCC.2016.100
http://dx.doi.org/10.1109/MCC.2016.100
http://dx.doi.org/10.1109/MCC.2016.100
http://dx.doi.org/10.1109/RTAS.2018.00013
http://dx.doi.org/10.1016/j.sysarc.2018.01.001
http://dx.doi.org/10.1016/j.sysarc.2018.01.001
http://dx.doi.org/10.1016/j.sysarc.2018.01.001


Microprocessors and Microsystems 99 (2023) 104848R. Queiroz et al.
[15] T.L. Foundation, ACRN hypervisor, 2021, https://projectacrn.org/ Accessed:
2021-04-01.

[16] Xen project, 2021, https://xenproject.org/ Accessed: 2021-04-01.
[17] R. Hat, Kernel virtual machine, 2021, https://www.linux-kvm.org Accessed:

2021-04-01.
[18] J. Zhang, K. Chen, B. Zuo, R. Ma, Y. Dong, H. Guan, Performance analysis

towards a KVM-based embedded real-time virtualization architecture, in: 5th
International Conference on Computer Sciences and Convergence Information
Technology, no. May 2016 in 1, 2011, pp. 421–426, http://dx.doi.org/10.1109/
ICCIT.2010.5711095.

[19] L. Abeni, D. Faggioli, Using xen and KVM as real-time hypervisors, J. Syst. Archit.
106 (January) (2020) http://dx.doi.org/10.1016/j.sysarc.2020.101709.

[20] Y. Brikman, Terraform: Up & Running: Writing Infrastructure as Code, second
ed., O’Reilly Media, 2017.

[21] F. Manco, J. Mendes, K. Yasukata, C. Lupu, S. Kuenzer, C. Raiciu, F. Schmidt, S.
Sati, F. Huici, My VM is lighter (and safer) than your container, in: SOSP 2017 -
Proceedings of the 26th ACM Symposium on Operating Systems Principles, 2017,
pp. 218–233, http://dx.doi.org/10.1145/3132747.3132763.

[22] A. Agache, M. Brooker, A. Florescu, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, D.-M. Popa, Firecracker: Lightweight virtualization for serverless
applications, in: NSDI 2020, 2020, pp. 419—434.

[23] N. Capodieci, P. Burgio, R. Cavicchioli, I.S. Olmedo, M. Solieri, M. Bertogna,
Real-time requirements for ADAS platforms featuring shared memory hierarchies,
IEEE Des. Test 14 (8) (2020) 1, http://dx.doi.org/10.1109/mdat.2020.3013828.

[24] J. Danielsson, T. Seceleanu, M. Jagemar, M. Behnam, M. Sjodin, Testing
performance-isolation in multi-core systems, in: Proceedings - International Com-
puter Software and Applications Conference, Vol. 1, IEEE, 2019, pp. 604–609,
http://dx.doi.org/10.1109/COMPSAC.2019.00092.

[25] Siemens, Jailhouse hypervisor, 2021, https://github.com/siemens/jailhouse
Accessed: 2021-04-01.

[26] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, M. Bertogna, Deter-
ministic memory hierarchy and virtualization for modern multi-core embedded
systems, in: Proceedings of the IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS, Vol. 2019-April, IEEE, 2019, pp. 1–14,
http://dx.doi.org/10.1109/RTAS.2019.00009.

[27] I-MECH project, 2021, https://www.i-mech.eu/ Accessed: 2021-04-01.
[28] Hercules Project, Hercules project, 2021, http://hercules2020.eu/ Accessed:

2021-04-01.
[29] P. Modica, A. Biondi, G. Buttazzo, A. Patel, Supporting temporal and spatial

isolation in a hypervisor for arm multicore platforms, in: Proceedings of the
IEEE International Conference on Industrial Technology, Vol. 2018-Febru, IEEE,
2018, pp. 1651–1657, http://dx.doi.org/10.1109/ICIT.2018.8352429.

[30] J. Martins, A. Tavares, M. Solieri, M. Bertogna, S. Pinto, BAO: A lightweight static
partitioning hypervisor for modern multi-core embedded systems, OpenAccess
Ser. Inform. 77 (3) (2020) 1–3, http://dx.doi.org/10.4230/OASIcs.NG-RES.2020.
3.

[31] S. Pinto, J. Pereira, T. Gomes, A. Tavares, J. Cabral, Ltzvisor: TrustZone is the
key, in: Euromicro Conference on Real-Time Systems, 2017, pp. 117–128.

[32] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, H. Guan, VTZ: Virtualizing ARM trust-
zone, in: Proceedings of the 26th USENIX Conference on Security Symposium,
SEC ’17, USENIX Association, USA, 2017, pp. 541–556.

[33] N. Borgioli, M. Zini, D. Casini, G. Cicero, A. Biondi, G. Buttazzo, An I/O
virtualization framework with I/O-related memory contention control for real-
time systems, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 41 (11)
(2022) 4469–4480, http://dx.doi.org/10.1109/TCAD.2022.3202434.

[34] H. Li, M. Xu, C. Li, C. Lu, C. Gill, L. Phan, I. Lee, O. Sokolsky, Multi-
mode virtualization for soft real-time systems, in: 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium, RTAS, 2018, pp. 117–128,
http://dx.doi.org/10.1109/RTAS.2018.00022.

[35] M.-c. Platforms, S. Whitepaper, PikeOS Safe Real-Time Scheduling Adaptive
Time-Partitioning Scheduler for EN 50128 certified Multi-Core Platforms PikeOS
Safe-Real Time Scheduling, Tech. rep., SYSGO, 2016, pp. 1–6.

[36] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, et al., seL4: formal
verification of an OS kernel, in: Proc. of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles (SOSP ’09), 2009, pp. 207–220.

[37] SYSGO, Pikeos RTOS & hypervisor, 2021, https://www.sysgo.com/pikeos
Accessed: 2021-04-01.

[38] Blackberry, QNX hypervisor, 2021, https://blackberry.qnx.com/en/software-
solutions/embedded-software/qnx-hypervisor Accessed: 2021-04-01.

[39] FentISS, Xtratum, 2021, https://fentiss.com/products/hypervisor/ Accessed:
2021-04-01.

[40] VMware, Performance Optimizations in VMware vSphere 7 . 0 U2 CPU Scheduler
for AMD EPYC Processors, Tech. rep., VMware, 2021, pp. 8–26.

[41] A. Tellabi, C. Ruland, Empirical study of real-time hypervisors for industrial
systems, in: Proceedings - 6th Annual Conference on Computational Science and
Computational Intelligence, CSCI 2019, 2019, pp. 208–213, http://dx.doi.org/
10.1109/CSCI49370.2019.00042.
13
[42] F. Hofer, M.A. Sehr, A. Iannopollo, I. Ugalde, A. Sangiovanni-Vincentelli, B.
Russo, Industrial control via application containers: Migrating from bare-metal to
IAAS, in: 2019 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom), IEEE, 2019, pp. 62–69, http://dx.doi.org/10.1109/
CloudCom.2019.00021, arXiv:1908.04465.

[43] M. Cinque, R.D. Corte, A. Eliso, A. Pecchia, RT-cases: Container-based virtualiza-
tion for temporally separated mixed-criticality task sets, Leibniz Int. Proc. Inform.
LIPIcs 133 (5) (2019) 1–5, http://dx.doi.org/10.4230/LIPIcs.ECRTS.2019.5.

[44] Y. De Bock, S. Mercelis, J. Broeckhove, P. Hellinckx, Real-time virtualization
with xvisor, Internet Things 11 (2020) 100238, http://dx.doi.org/10.1016/j.iot.
2020.100238.

[45] C.F. Yang, Y. Shinjo, Obtaining hard real-time performance and rich linux fea-
tures in a compounded real-time operating system by a partitioning hypervisor,
in: VEE 2020 - Proceedings of the 16th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, 2020, pp. 59–72, http://dx.doi.
org/10.1145/3381052.3381323.

[46] C. Scordino, I.M. Savino, L. Cuomo, L. Miccio, A. Tagliavini, M. Bertogna, M.
Solieri, Real-time virtualization for industrial automation, in: IEEE International
Conference on Emerging Technologies and Factory Automation, ETFA, Vol.
2020-Septe, 2020, pp. 353–360, http://dx.doi.org/10.1109/ETFA46521.2020.
9211890.

[47] Z. Jiang, K. Yang, Y. Ma, N. Fisher, N. Audsley, Z. Dong, I/o-GUARD:
Hardware/software co-design for I/O virtualization with guaranteed real-time
performance, in: 2021 58th ACM/IEEE Design Automation Conference, DAC,
IEEE Press, 2021, pp. 1159–1164, http://dx.doi.org/10.1109/DAC18074.2021.
9586156.

[48] D. Casini, A. Biondi, G. Cicero, G. Buttazzo, Latency analysis of I/O virtualization
techniques in hypervisor-based real-time systems, in: 2021 IEEE 27th Real-
Time and Embedded Technology and Applications Symposium, RTAS, 2021, pp.
306–319, http://dx.doi.org/10.1109/RTAS52030.2021.00032.

[49] ITCandor, Share of the global server market in the first half of 2018 and 2019,
2020, https://www.statista.com/statistics/915091/global-server-share-physical-
virtual/.

[50] Cyclictest, 2021, https://wiki.linuxfoundation.org/realtime/documentation/
howto/tools/cyclictest/start Accessed: 2021-02-01.

[51] Stress, 2021, https://packages.debian.org/stretch/devel/stress Accessed: 2021-
02-01.

[52] R. Queiroz, T. Cruz, P. Simões, Real-time task latency in general-purpose
hypervisors - testing the limits, 2022, http://dx.doi.org/10.21227/h7ye-x037.

[53] R. Delgado, B.-J. You, B.W. Choi, Real-time control architecture based on
xenomai using ROS packages for a service robot, J. Syst. Softw. 151 (2019)
8–19, http://dx.doi.org/10.1016/j.jss.2019.01.052.

Rui Queiroz is an Ph.D student at the Department of
Informatics Engineering of the University of Coimbra (UC),
also being a researcher at the Centre for Informatics and
Systems of the UC. His research interests encompass areas
as diverse as communications infrastructures management,
software defined networking and critical infrastructure
security, being currently focused on the topics of virtual-
ized realtime execution environments and communications
infrastructures.

Tiago Cruz received the Ph.D. degree in informatics engi-
neering from the University of Coimbra, Coimbra, Portugal,
in 2012. He has been an Assistant Professor in the De-
partment of Informatics Engineering, University of Coimbra,
since December 2013. His research interests include areas
such as management systems for communications infrastruc-
tures and services, critical infrastructure security, broadband
access network device and service management, Internet of
Things, software defined networking, and network function
virtualization (among others). He is the author of more
than 80 publications, including chapters in books, journal
articles, and conference papers. Dr. Cruz is a member of
the IEEE Communications Society.

Paulo Simões received the Doctoral degree in informat-
ics engineering from the University of Coimbra, Coimbra,
Portugal, in 2002. He is an Assistant Professor in the
Department of Informatics Engineering, University of Coim-
bra, where he regularly leads technology transfer projects
for industry partners such as telecommunications opera-
tors and energy utilities. His research interests include
future Internet, network and infrastructure management,
security, critical infrastructure protection, and virtualization
of networking and computing resources. He has more than
150 publications in refereed journals and conferences. Dr.
Simões is a member of the IEEE Communications Society.

https://projectacrn.org/
https://xenproject.org/
https://www.linux-kvm.org
http://dx.doi.org/10.1109/ICCIT.2010.5711095
http://dx.doi.org/10.1109/ICCIT.2010.5711095
http://dx.doi.org/10.1109/ICCIT.2010.5711095
http://dx.doi.org/10.1016/j.sysarc.2020.101709
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb20
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb20
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb20
http://dx.doi.org/10.1145/3132747.3132763
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb22
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb22
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb22
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb22
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb22
http://dx.doi.org/10.1109/mdat.2020.3013828
http://dx.doi.org/10.1109/COMPSAC.2019.00092
https://github.com/siemens/jailhouse
http://dx.doi.org/10.1109/RTAS.2019.00009
https://www.i-mech.eu/
http://hercules2020.eu/
http://dx.doi.org/10.1109/ICIT.2018.8352429
http://dx.doi.org/10.4230/OASIcs.NG-RES.2020.3
http://dx.doi.org/10.4230/OASIcs.NG-RES.2020.3
http://dx.doi.org/10.4230/OASIcs.NG-RES.2020.3
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb31
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb31
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb31
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb32
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb32
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb32
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb32
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb32
http://dx.doi.org/10.1109/TCAD.2022.3202434
http://dx.doi.org/10.1109/RTAS.2018.00022
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb35
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb35
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb35
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb35
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb35
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb36
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb36
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb36
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb36
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb36
https://www.sysgo.com/pikeos
https://blackberry.qnx.com/en/software-solutions/embedded-software/qnx-hypervisor
https://blackberry.qnx.com/en/software-solutions/embedded-software/qnx-hypervisor
https://blackberry.qnx.com/en/software-solutions/embedded-software/qnx-hypervisor
https://fentiss.com/products/hypervisor/
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb40
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb40
http://refhub.elsevier.com/S0141-9331(23)00094-7/sb40
http://dx.doi.org/10.1109/CSCI49370.2019.00042
http://dx.doi.org/10.1109/CSCI49370.2019.00042
http://dx.doi.org/10.1109/CSCI49370.2019.00042
http://dx.doi.org/10.1109/CloudCom.2019.00021
http://dx.doi.org/10.1109/CloudCom.2019.00021
http://dx.doi.org/10.1109/CloudCom.2019.00021
http://arxiv.org/abs/1908.04465
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2019.5
http://dx.doi.org/10.1016/j.iot.2020.100238
http://dx.doi.org/10.1016/j.iot.2020.100238
http://dx.doi.org/10.1016/j.iot.2020.100238
http://dx.doi.org/10.1145/3381052.3381323
http://dx.doi.org/10.1145/3381052.3381323
http://dx.doi.org/10.1145/3381052.3381323
http://dx.doi.org/10.1109/ETFA46521.2020.9211890
http://dx.doi.org/10.1109/ETFA46521.2020.9211890
http://dx.doi.org/10.1109/ETFA46521.2020.9211890
http://dx.doi.org/10.1109/DAC18074.2021.9586156
http://dx.doi.org/10.1109/DAC18074.2021.9586156
http://dx.doi.org/10.1109/DAC18074.2021.9586156
http://dx.doi.org/10.1109/RTAS52030.2021.00032
https://www.statista.com/statistics/915091/global-server-share-physical-virtual/
https://www.statista.com/statistics/915091/global-server-share-physical-virtual/
https://www.statista.com/statistics/915091/global-server-share-physical-virtual/
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://packages.debian.org/stretch/devel/stress
http://dx.doi.org/10.21227/h7ye-x037
http://dx.doi.org/10.1016/j.jss.2019.01.052

	Testing the limits of general-purpose hypervisors for real-time control systems
	Introduction
	Industrial and Automation Control Systems
	Cyber–physical systems
	Control Devices

	Real-Time Systems
	Latency
	Jitter
	Power management c-states, p-states, t-states
	Mixed-criticality Systems

	Virtualization of real-time systems
	RTOS
	Virtualization
	From hypervisors to containers
	The challenges of virtualizing RT workloads
	Isolation
	Scheduling

	Virtualization applied to cyber–physical systems

	Evaluation of COTS Hypervisors for Real-Time Scenarios
	Testing scenarios
	Testing Procedures
	Obtained results and discussion
	GPOS
	RTOS


	Conclusion and future work
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


