SAVERY: A Framework for the Assessment and Comparison of
Mobile Development Tools

José Donato, Naghmeh Ivaki, and Nuno Antunes
CISUC, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
jose.donato@openbb.finance, naghmeh@dei.uc.pt, nmsa@dei.uc.pt

Abstract—Different types of mobile development tools and
frameworks to build web applications are constantly and
rapidly emerging, making it difficult for developers to choose
an appropriate one for their needs. In this work, we propose
a novel framework to assess and benchmark development
tools according to performance (and potentially dependability
and security). The framework defines the components and
procedures required to define and execute the benchmarks.
To demonstrate the applicability of the proposed framework,
we implemented it for a concrete benchmark focused on
assessing the performance of a representative application de-
veloped by different development tools. For this, we defined
a representative set of features for the application and a
set of relevant metrics to characterize their performance.The
benchmarking campaign is executed on each application in
an automated manner. The metrics are collected during the
execution of the campaign and the results are then analyzed to
compare the applications, their features, and the development
tools that produced them. The results show that the same
applications implemented in different frameworks are different
in terms of software metrics and build time and show different
performance when executing different functions (features) in
terms of computation time, memory, and CPU usage. This
reveals the effectiveness of the approach and the framework
proposed to assess and compare the mobile development tools.

Keywords—Mobile applications; Native applications; Web ap-
plications; Benchmarking; Performance; Android

1. INTRODUCTION

During the last few decades, smartphones have improved
tremendously, and their usage has come along (i.e., about 6.9
billion mobile phone in 2023). This massive adaptation led
to continuous improvement of mobile devices (e.g., regard-
ing their functionalities and computation power) and, con-
sequently, increased mobile application requirements. As the
requirements for this type of application have been expanded
to cover more functionalities and achieve better quality, an
increased number of development tools were created and are
available to support developers in creating such applications.
In general, three main types of mobile applications can be
developed: Native applications, which run natively after being
installed. They are typically the primary choice for developers
because they are fast and work offline. However, when the
ability to support multiple platforms is vital, development and
maintenance become time-consuming as they are tied to the

target platform [28]. Web applications, which run directly on
a browser, and thus, they can run on all devices using the same
codebase. However, sometimes they are not able to achieve
the same performance as native applications or provide offline
functionalities, although these limitations are being reduced
by Progressive Web Applications [5]. Hybrid applications,
which run natively, but they usually are built using web
technologies and packed into native containers. They enable
the development of native applications for multiple platforms,
sometimes at the cost of performance [18].

When developing an application for mobile devices, develop-
ers need to choose an appropriate approach and an adequate
development tool (or framework) to implement it. The main
associated challenge is that there are countless options with
different characteristics (e.g., React Native or Kotlin for native,
React.js or Svelte for web). In the JavaScript ecosystem,
this number is constantly increasing, causing “JavaScript Fa-
tigue” [17]. Thus, there is a clear need for techniques that
allow assessing and comparing different properties of mobile
development tools, both the ones currently available and the
ones that are yet to appear, to help developers decide which
are the best solutions based on their requirements.

This paper proposes a new framework for assessing
different mobile application development tools consider-
ing several properties, such as performance (and potentially
dependability and security). To implement and evaluate the
proposed framework, we designed and implemented a concrete
benchmark to evaluate and compare multiple popular develop-
ment tools according to performance. As a direct comparison
of the development tools (or frameworks) is nontrivial and
does not precisely reflect the performance of the applications
implemented by these tools, we propose implementing an
application, with a representative set of features, by using
different development tools. We defined a set of 8 principal
features (reference app specification) that users expect to
find in a mobile application, such as access to the camera
and rendering user’s geolocation (see Section 4-Al). Then,
we selected a set of 7 recent and widely used development
tools including React.js, Svelte, Next.js, Gatsby, Preact,
React Native, and Ionic (see Section 4-A2). Each tool was
used to develop one application with the reference set of
features, resulting in a set of similar applications in terms
of functionality. We then selected several key performance
metrics (e.g., RAM consumption, response times, CPU usage)
to be measured during the tests.

All the applications should pass a set of automated func-

tionality tests specific to the implemented features (see Sec-
tion 4-B2). Then, all applications are submitted to an auto-
mated assessment procedure during which metrics are col-
lected and used for the (indirect) comparison of the develop-
ment frameworks. Although all the applications were devel-
oped in-house, the benchmark is designed to welcome and in-
corporate future improvements. This is an open-source project,
which is called SAVERY and is inspired by Techempower

Benchmarks [24]. The project is open to the contribution of

the community.

The main contributions of this study are as follows:

« Proposing a new and extensible framework, namely SAV-
ERY, for assessing and benchmarking mobile development
tools;

« Implementing the proposed framework to assess and com-
pare 7 mobile development tools according to performance;

« Making this implementation available online for the com-
munity to use (and improve);

The results show that tools such as Preact or Next.js, which
are built with performance as the primary requirement, show
more promising results than other development tools (e.g.,
the ones based on React). It was also possible to observe
that different tools performed differently in executing different
features (or functionalities), highlighting the importance of
helping developers choose an appropriate development tool in
a clear and systematic way. We also observed that some tools
performed better in terms of execution time but consumed
much more memory and CPU. This is very relevant in an
environment where resource and energy consumption are rel-
evant. In general, this experiment revealed our benchmarking
framework’s effectiveness in assessing and comparing different
development tools.

2. BACKGROUND AND RELATED WORK

This section reviews the relevant concepts and related work in
the context of this study.

2.1. Benchmarking

Benchmark can be defined as “standard tools that allow
evaluating and comparing different systems or components
according to specific properties (e.g., performance, depend-
ability, security)” [29]. This allows customers and vendors to
assess and compare different products to ease the process of
selecting a product or to help to improve the products. In order
to make a fair and meaningful comparison, a benchmark must
be highly representative: i) the conditions and setup in which
the benchmark is performed must be representative of realistic
scenarios, ii) the properties (e.g., performance, security) of the
product that are the target of the benchmark must be represen-
tative of the main functional and non-functional requirements
of the product, and finally iii) the metrics chosen must be
informative of those properties [12].

Four key components of a benchmark are: i) System Under
Benchmark (or SUB), which refers to the product that will be
assessed in the benchmark; ii) Rules/procedure, which spec-
ify what needs to be followed during the benchmark campaign.

The procedure must be easy to follow because the benchmark
needs to be easily re-executed; iii) Workload, which refers to
input values determining the type of operations that should be
executed during the benchmark; and iv) Measures/Metrics),
which refer to the metrics or measurement tools to be used
for assessment.

2.2. Evaluation and Benchmark of Mobile Development Tools

Evaluating web applications is not a new topic [11]. In 2008,
a benchmark for Web 2.0 websites was published [22]. In
this benchmark, a set of automation tools to generate work-
load and measure the websites’ performance are presented.
They developed two similar applications providing the same
functionalities in PHP and Ruby on Rails. Similar to the
previous work, in 2011, a study provided an architecture for
benchmarking frameworks to develop Web 2.0 applications
(e.g. Ruby on Rails or PHP) [2]. Another study compares
a PWA with a traditional Web Application [23]. They used
the same template for both applications and implemented the
PWA features in one of them. This resulted in two identical
applications: one that had PWA capabilities (e.g. work offline)
and another one without it. In 2017, the energy efficiency in
PWA was studied [19].

TechEmpower benchmark [24] measures the performance of
multiple operations (e.g., JSON serialization, database queries,
etc.) in traditional web applications. Although being consid-
ered a standard for benchmarking web applications, it only fo-
cuses on traditional web applications. The same applies to Web
frameworks benchmark [25]. js-framework-benchmark [15] is
another web application benchmark that consists of multiple
operations around an HTML table developed using different
SPA frameworks. However, the features in the application
tested are not representative of what a SPA is capable of (i.e.,
CRUD operations around a table may be one use case of a
SPA, but it is not the only one).

A study focused on Flutter created a framework to develop
multiple applications from the same codebase, and compares
them to Apache Cordova (now called Ionic) and Native [9]. A
work performing performance analysis of a fully functional
mobile application implemented in several cross platform
tools and native for Android, i0S, and Windows Phone op-
erating systems are presented in [28]. A comparison between
a Native Android Application and a PWA was published in
2017 [6]. They developed the same app in both native Android
with Java and PWA with React.js. There are more similar
studies in the literature [1], [4], [8], [7].

In general, all studies provide theoretical explanations of the
frameworks under study but have limitations when it comes to
benchmark campaigns. Some benchmarks are out of date [20],
[28] and some are limited to a small and unrepresentative
number of features [6], [1], [25], [15].

3. FRAMEWORK TO ASSESS AND COMPARE MOBILE DE-
VELOPMENT TOOLS

Comparing development tools is a challenging proposition, as
it is not feasible or relevant to compare them in direct terms,

(1.a)
Feature

Selection
Criteria

(1.b)
Development
Tool Selection
Criteria

(1)
Metric

Selection
Criteria

1. PRELIMINARY
ANALYSIS

(1.d) (1)
Development (1e) Select (1)
Tools, Features, FSGLeCl Rt 'aelte_cx
Metrics L tools etrics
I I
Reference Appl Selected
o i ion Development
——————————— J e
2. PREPARATION OF THE
SYSTEMS UNDER (2.a) Implement Apps
BENCHMARK (SUB) with D <
Tools Selected
l Invalid Applications Metrics

(2.b)
Functional
Test cases

(2.c) Validated Applications

Al
Functional Validation

3. BENCHMARK CAMPAIGN

(3.)
Configurations

‘ \ 4

(3.f)
P> Collect Runtime
Metrics

v

(3.0)
Workload 3.8
Collect Static

Metrics

(3.e)
Execution of SUBs

Runtime Metrics Data Static Metrics Data

4. RESULTS ANALYSIS \ 4

(4.c)

g Comparison
Between the

Development Tools

(4.2) (4.b)
Comparison > D Tool
between SUBs Individual Analysis

Figure 1. Overview of the proposed framework.

but instead, the usefulness of comparing them is to learn,
which helps to create better applications or helps to create
applications with less effort or knowledge from the developers.
We argue that it is possible to make this comparison through
the output of these tools, i.e., the developed applications.
With this approach, one can evaluate and compare several
kinds of properties such as performance (i.e., response time,
CPU, and memory usage), dependability, security, and ease of
development of the resulting application.

However, this analysis cannot be performed in an ad-hoc or
naive manner. Thus, we propose a framework that carefully
lays out the relevant components and procedures to develop
benchmarks that can support this type of evaluation in a fair,
useful, and representative way.

Figure. 1 depicts an overview of the key components of the
framework. It details steps to define benchmarks that have
specific targets in terms of applications and quality attributes.
This framework is designed to be extensible and open to the
community. There are four key phases, which are discussed in
the ensuing paragraphs.

3.1. Preliminary analysis

This phase defines the benchmark’s target, types of develop-
ment tools to be adopted, and quality attributes of interest. To
do so, we need to specify the feature selection criteria, the

development tool selection criteria, and the metric selection
criteria.
The main feature selection criterion is regarding the rep-
resentativeness of the features. Based on this criterion, we
analyze and select a representative list of features of mo-
bile applications, which represents the set of features that
the applications developed by the SUBs should support and
should correspond to classes of applications that might be
of interest to groups of developers. The result is a reference
app specification, which is a specification that details which
functionalities should be implemented in each application and
the respective interactions, and a set of functional tests to those
functionalities.
Next, we need to analyze the existing development tools for
mobile applications to select a representative list of them (i.e.,
commonly used and recommended by the community). There
are only two requirements/criteria that restrict the available
development tools: i) need to produce applications for mobile
devices, and they can be either native, web, or hybrid; ii)
need to provide the ability to identify each element of the
application with a unique id. This is crucial because, in tests,
we treat the applications as a black box system and the only
way to perform operations around the elements is if they have
unique identifiers.

Finally, we need to select adequate metrics to collect. The

metrics should help to understand the quality attributes of

interest and to provide insightful comparisons. Two main types
can be used:

o Static metrics: collected before running the campaign tests.
Includes, for example, application size, line of codes, de-
pendencies number (and dependencies number only for
development), and build times.

« Runtime metrics: collected during the execution of SUBs
(i.e., during the execution of benchmark campaign test
cases) and includes, for example, response times, CPU
usage, and RAM consumption.

The output of this phase (i.e., selected tools, selected features,

and selected metrics) is used in the following phases.

3.2. Preparation of SUBs

In this second phase, we prepare the systems under assessment
for the campaign that will be executed in the next phase. This
phase is responsible for developing the applications following
the reference app specification defined in the previous phase.
After implementing the applications, they pass through a
functional test (by submitting a predefined workload, i.e., input
values that emulate and automate the applications’ end-users’
actions). The functional tests aim at validating the correct
functioning of the applications.

Ideally, applications should be developed by developers that
are fluent in each specific development tool to make sure that
the implemented application adopts the corresponding best
practices. When this is not possible, bias problems should
be mitigated with the possibility of reviewing and improving
the implementations or having multiple versions for the same
application.

The tests to be developed should be as non-intrusive as
possible. Therefore applications should be treated as black
boxes during the execution of tests. As opposed to other
studies in the area, there is no custom code in each application
to collect response times during the execution of the tests, for
example. Also, the benchmark needs to be easily reproduced,

i.e., easy to repeat. We decided to create a set of automated

tests (described as workload and more detailed below) that

would always behave in the same manner without the need for
human interaction. Hence, there is a need for a tool capable of
producing automated tests to produce and run the workload.

We suggest including at least three elements in the experi-

mental environment (i.e., the environment required to run the

tests):

o Testing and Measurement Tool: responsible for a running
tool that will send the automation tests to the target device
and for gathering the previously defined metrics;

o Target device: where the applications under test will run.
This device must be connected to the Testing and Measure-
ment Tool,

« Remote server: serves the applications and the backend that
the applications may require. This server should be deployed
on a machine with a decent amount of RAM and high-speed
network transfers to prevent it from becoming a bottleneck.

A benchmark workload refers to the applications’ input

values, which determine the type of operations that should be

executed during the benchmark. The main associated challenge
is workload representativeness. Our workload for both the
validation and campaign phases is the same. It has the goal of
emulating what an end-user of our application would do and
comprises a set of automated tests that cover all the application
functionalities in a certain sequence. The benchmark workload
should follow the reference app specification in the first phase,

i.e., it should go through the application components and test

all of its functionalities.

A Testing and Measurement Tool should be implemented to

create and submit the workload to the applications that will be

running in the target device. Although in the validation phase,
the metrics will not be collected, this tool also implements
this process. Before proceeding to the next phase, all the
applications must be validated by running the functional tests.

Once all the applications are validated, they can proceed to

the following phase.

3.3. Benchmark Campaign

This phase is responsible for executing the benchmark and
collecting the metrics. As inputs, it receives the validated
applications and the selected metrics. For certain configura-
tions, the validated applications characterized now as System
Under Benchmark (SUB) will be tested again several times
while collecting the metrics with the help of the Testing and
Measurement Tool (TMT).

3.3..1. Configurations: The campaign must comply with a
certain set of configurations before the execution, such as:

o If the applications under test are web-based, they must be

served with HTTPS.

Testing and
Measurement Tool

Remote server
(serves the applications
and the backend)

o
t)Q

Target device
(runs the applications)

[«

Figure 2. Proposed Benchmark Campaign flow.

« Applications must be isolated from each other in the remote
server to have fair comparisons.

o Permissions are not granted to any application. This is done
to emulate what happens in real-world scenarios.

« The target device that is running the application cannot have
background processes running.

3.3..2. Execution of subs: A campaign flow proposed to
execute the SUBs is described in Figure. 2 and enumerated
below:

1) TMT initiates the execution by requesting the application
(SUB) to the remote server.

2) TMT receives and starts the connection to the target device
that will run the SUB requested.

3) TMT connects to the target device and sends the SUB
and the workload to the target device while periodically
querying the previously defined metrics. TMT saves the
results as it receives these values.

4) Target device may communicate with a backend in the
remote server to perform some kind of operation required
by the reference app (e.g., authenticate, fetch content from
the database).

5) TMT finishes injecting the workload saves the results,
closes the connection to the device, and cleans its usage.

The benchmark campaign should run several times for each
application to reduce/eliminate the effect of random errors.

3.3..3. Collecting metrics: The Testing and Measurement Tool
should also be implemented in the process of collecting the
carefully chosen metrics. This process must: i) be repro-
ducible, i.e., easy to execute since the campaign must be
executed several times; ii) be non-intrusive: the goal is to
minimize the impact of this process on the applications to have
transparent results; iii) be fair to all types of applications under
test (e.g., should not be more expensive to collect metrics
in Web applications than in Native ones). When in need of
an external library to count, for example, the lines of code
of the applications, one should seek, when possible, libraries
that support all the applications under test, i.e., avoid using
different libraries to collect the same metric. Also, collecting
metrics should as simple and naive as possible keep the
campaign complexity low. For example, if all the applications
are JavaScript-based, to collect the dependencies number, this
process can be as simple as analyzing the package. json
file. When possible, tools that are already available should be
used to the detriment of adding new libraries (thus, increasing
the campaign complexity). For example, if the target is an
Android device, Android Debug Bridge (ADB) commands can

be used to query important metrics such as CPU usage, RAM
consumption, and battery levels, among others.

3.4. Result Analysis

Finally, the fourth phase, Result analysis concludes our
assessment process. In this last phase, all the metrics are
received from the previous phase. The metrics allow evaluation
of each application and its development tool, and consequently,
comparison between them. The Testing and Measurement Tool
must save the results in a well-organized manner. Each cam-
paign execution should output the following data: i) config:
configuration used for the current campaign; ii) measures: list
of measures gathered during the workload injection (e.g., CPU
usages); iii) results: additional information about the campaign
(e.g., start-up duration); iv) tests information: e.g., outcome,
duration, timestamps.

4. A PERFORMANCE BENCHMARK FOR MOBILE DEVELOP-
MENT TOOLS

To demonstrate the applicability of the proposed framework,
we instantiated it in a concrete benchmark that targets en-
tertainment and utility applications, development tools that
are popular in the JavaScript community, and with a focus
on performance as the quality attribute of interest. All the
artifacts, including the sources of the applications used in the
experiments, are available online!.

The implementation of the benchmark consists of four main
phases that match the phases of the framework previously
presented in Section 3. The following subsections present
in detail the three first phases, while the final phase, Result
analysis, will be presented and discussed in Section 5.

4.1. Preliminary Analysis

4.1..1. Reference Application Specification: Considering en-
tertainment and utility applications, we leave out of the scope
of our study other types of applications such as games, pay-
ment, and chat. In order to understand which features the ref-
erence application specification should support, we analyzed
the most popular applications and their primary features [26],
[14], [3]. This analysis is included in the benchmark website.
The analysis showed that all the applications seem to somehow
rely on native features such as camera access, geolocation,
and notifications. A lot of them require login to access the
main features of the application. Also, most applications rely
on fetching content (e.g., images or videos) from an external
source. Given these observations, we designed the structure
presented in Figure. 3, which is representative of the mobile
applications to be tested with the majority of features and the
typical navigation flow.

According to this architecture, when first visiting the applica-
tion is presented with a landing page, and if it is not logged
in, the user can proceed to do so by navigating to the login
page. On this page, after submitting the credentials, an HTTP
request is sent to the backend server that will then return a
unique token in case the credentials are correct, and the user

Uhttps://anonymous.4open.science/r/savery

. Credentials
<User is not logged in>
99 Backend

Server

—

JSON web token

ul pabboj si asn>

Request Data

! Data

—Pp Navigation Flow
—> HTTP Messages

<l

<login is succeed>

<

Application

’ Component 1 ‘ ’ Component 2 ‘ ’ Component N ‘

Figure 3. General architecture of the applications to be implemented.

is redirected to the homepage. On the homepage, the user can
access eight carefully thought components that aim to cover
the majority of the features presented in the table above.
The components are the following: Camera: renders live cam-
era feed; Geolocation: renders user geolocation; File Access:
when a button is clicked, a file picker is displayed to select
an image from the file system; Notifications: after clicking a
button, a local native notification is sent to the device; Feed:
when the page mounts, several random posts are requested to
our backend server; Carousel: when the page mounts, random
images are requested and rendered to the screen, and as the
user scrolls through the page, more images are requested and
rendered simulating an infinite scroll; Background Sync: this
component tracks the user connection and fetches content from
the cache; Expensive Operation: contains several buttons to
perform expensive operations in a table, such as creating 100
and 1000 rows, and swapping or deleting rows.

4.1..2. Selection of development tools: We selected seven
different development tools to use in implementing applica-
tions to be tested. The following list enumerates the chosen
development tools and their relevance for the benchmark: 1)
React.js: uses a virtual DOM to build web applications, and
it is, currently, the most popular development tool; 2) Preact:
Minimalistic version of React to produce fast and simple web
applications; 3) Next.js: Scalable and production-ready library
built on top of React; 4) Gatsby: built on top of React to
produce static web applications; 5) Svelte: interacts with the
real DOM to build web applications; 6) Expo: is a framework
built on top of React Native to build applications for several
platforms from the same codebase; 7) Ionic and Capacitor:
Uses web view containers to render in multiple platforms using
web technologies and Capacitor to call to APIs.

4.1..3. Metrics: For the static metrics, the benchmark includes
application size, line of codes, dependencies number (and
dependencies number only for development), and build times.
For the runtime metrics, the benchmark contains three metrics:
response times, CPU usage, and RAM consumption.

CPU usage is the percentage of CPU used by each application
during a certain interval [28]. An higher CPU usage will have
an impact on the battery duration. RAM consumption is the
amount of memory allocated by the application being tested,
and devices can see their performance “degraded if a high

percentage of the available RAM is allocated” [28]. Response
Times are the most important metrics to mobile application
users. This is the total duration that an action took to happen.
Studies show that “53% of mobile users abandon sites that
take over 3 seconds to load” [13].

Once measured, all the metrics presented have one thing in
common: the smaller their value, the better. In Section 4-C3
we explained how each metric was collected during the
Benchmark Campaign.

4.2. Preparation of the System Under Benchmark (SUB)

In the second phase, we developed the seven applications and
validated them with functional testing.

4.2..1. Application Development: All the applications were
developed in-house. Although this might introduce some bias
in the evaluation, this will be mitigated when the project is
open to the community, and engineers will be able to improve
or fix the existing implementations and add implementations
relative to new development tools.

To style the applications, we used a styling solution named
Tailwindcss 2 for all web applications and Ionic. With this
approach, we reduce the time wasted styling the applications
(because all the styling is reused) and reduce the possible
bugs in this process. Since Tailwindcss is not supported on
React Native, we did not use any additional library to style
the elements on that application.

To build the React Native application, we used Expo 3. Expo
is built on top of React Native and can produce output to the
web in addition to iOS and Android platforms. Expo provides
several libraries that are easier to install in an Expo project.
The other applications (i.e., the applications built with Next.js,
preact, and Gatsby) were built using their official command-
line helpers.

For the operation, carousel, or feed component, where there
was a need for adding several elements to the screen, we could
have used specific libraries that virtualize the elements (i.e.,
only render them when they are visible on the screen) to make
it more performant. However, we opt not to do it and keep
the applications as simple and with fewer third-party libraries
as possible. In the future, there is a possibility to add new
application versions to the benchmark to compare whether
these solutions impact the performance of the applications.
4.2..2. Functional Testing: To satisfy the requirements of the
framework and produce a valid Testing and Measurement
Tool, we found three main candidates: Appium, Selenium, and
Selendroid.

We ended up choosing Appium over the others because of
several reasons: i) Appium supports multiple platforms (e.g.,
Android, i0S) as opposed to Selenium that only supports web
environments, and although we are only targeting Android in
our benchmark, our framework can be easily extended to more
platforms; ii) Appium can automate tests to multiple environ-
ments (e.g., web, native, and hybrid); iii) Appium allows us

Zhttps://tailwindcss.com/tailwindcss
3https://expo.io/expo.io

to write the tests with WebdriverlO, a library that has Node.js
bindings (a language we are very familiar with); iv) Selendroid
development ceased activity; v) Appium has a client-server
architecture which allowed us to build an auxiliary Testing and
Measurement Tool. Our experimental environment includes
the three elements specified in the framework:

o Testing and Measurement Tool (TMT): responsible for
running Appium and establishing the connection between
the Android device and Appium. After the connection is es-
tablished, the tool will send the automated tests to the device
while collecting the metrics.Detailed in Section 4-B4.

¢ An Android device: connected to the TMT via USB, with
the following specs: 4GB RAM, medium-end CPU (a Octa-
core with 4x2.3 GHz Cortex-A72 & 4x1.8 GHz Cortex
A53), GPU Mali-T880 MP4, and Android version 7.

« Remote server: The current architecture was deployed with
the help of Dockerfor isolation and Nginx Proxy Manager.
For each web application, an Nginx web server was used
to serve the respective production build files. For the native
and hybrid applications, another server was used to serve
the Android APKs.

4.2..3. Workload: The benchmark workload follows the refer-
ence app specification previously defined. The main objective
of the workload is to go through the application and test its
components extensively without any human interaction.

Each component has a set of specific functionalities that the
workload goes through with the help of automated tests, as
follows. 1) Visits landing page; 2) Clicks button to request
permissions; 3) Accept all the request permissions. Web ap-
plications request three permissions: notifications, geolocation,
and camera. Native only requests geolocation and camera
permissions because notifications are granted by default.; 4)
Press the login link to be redirected to the login page; 5)
Insert the correct login credentials; 6) Press the login button
to be redirected to the home page; 7) Visit each component by
accessing them in the navbar; 8) In each component, execute
the respective functionalities; 9) After all the components are
visited, open navbar and press logout

After half the components are visited, the application goes
to the background to measure its CPU usage and RAM
consumption while not active. A table enumerating all the
performed tests is included on the benchmark website. The set
of these tests altogether is our workload for both the Validation
and Campaign phases.

4.2..4. Measurement and Testing Tool: Since our objective is
to make this study an open-source project, we implemented
this tool using TypeScript, a superset of JavaScript, designed
to be more scalable and easier to maintain.

To create the workload above-mentioned, we used automated
tests with the help of multiple testing frameworks of the
JavaScript environment: WebdriverlO, Mocha® and Chai’.

“https://www.typescriptlang.org/
Shttps://webdriver.io/
Shttps://mochajs.org/
https://www.chaijs.com/

Appium®, an automation testing framework already mentioned
before, is then responsible for sending the tests and interacting
with the device.

In the campaign phase, while the tests are running, this
tool also sends ADB (Android Debug Bridge) commands
periodically to the connected Android device to collect the
CPU usage and RAM consumption. All these measures and
test results are then saved into JSON and Sqlite files for further
analysis. While the automation tests were sent to the target
device in the main thread, we used a library called Threads.js’
to spawn a new thread to send the ADB commands referred to
in Section 4-C3 to collect the metrics every 200 ms. This tool
needs to be running on a device with a valid Android SDK
installation to be compatible with Appium.

After the applications were implemented, the Testing and
Measurement Tool injected the workload to validate the appli-
cations. Some fixes were needed, but once all the applications
were validated, they were ready to proceed to the next phase.

4.3. Benchmark Campaign

In the third phase, also with the help of the measurement
tool explained in the previous section, the same workload was
injected again but this time while gathering the previously
defined metrics. We will start by explaining how each metric
was collected and then how the campaign was conducted.

4.3..1. Configurations: Before starting each execution, the
campaign must comply with the following configurations:

o All the web applications and the backend server must be
served with HTTPS (also a requirement for the validation
phase).

« Applications must be isolated from each other in the remote
server to have fair comparisons.

o Permissions are not granted to any application to emulate
what happens in the real world.

o The target device that is running each application cannot
be running any other applications. We made sure the CPU
and RAM overall utilization were always below 3% for 5
straight seconds before starting each campaign.

4.3..2. Execution of SUBs: As for the benchmark campaign
flow, we follow the suggestion from our framework mentioned
in Section 3-C, with the particularity that n our benchmark,
we repeat the campaign at least 6 times for each application.
4.3..3. Measuring metrics: To measure the size of web ap-
plications, we used the service lighthouse — metrics.com
and lighthouse — metrics.com, which provides the total
transferred resources size. For native and hybrid applications,
this value is just the size of the final Android Application
Pack (APK). The 1ines of code were measured with the
help of cloc!®, a great tool to count physical lines of source
code in many programming languages.The dependencies
number was calculated by analyzing the package. json
file. To compute the build time, we used the time

8http://appium.io/
https://threads.js.org/threads js
10https://github.com/AlDanial/cloc

13000
11707

10413

9120
7827
6533
5240
3947
2653
- Bm -
67

Duration (ms)

expo gatsby ionic nextjs preact react svelte
70 —
63
56
49
S
< 42
o
>
3 35
E]
Z 28
()
21
14
7
0 — NN
expo gatsby ionic nextjs preact react svelte

RAM Consumption (MB)
@
o
w

T T T T

nextjs

105 ﬂ:_
5

expo gatsby ionic preact react svelte

Figure 4. Results per application: Average Test Duration (ms),
CPU Usage (%) and RAM Consumption (MB).

command from Unix. For native and hybrid applications, an
additional step was needed. Since these applications need to
be built using Android Studio, this duration also needs to be
accounted for. Considering Expo uses its cloud-based system
to build the APKs, the duration did come from this system
instead of Android Studio.

Runtime metrics are trickier to collect, and to respect the
framework requirements, we developed a solution that was
non-intrusive and had minimal impact on the benchmark.

To collect the CPU usage, our Measurement and Testing
Tool sends the adb top command every 200 ms during the
execution of the tests via USB on the Android device. After
analyzing each test’s duration, we concluded that 200ms would
be small enough to intersect each test and provide the CPU
usage during the execution of each test.For web applications,
the package monitored through the above command is the
browser on which the applications are running (i.e., Google
Chrome in this study, hence the package name used in the
above command is com.android.chrome). In the case of
native or hybrid applications, the package considered is the
respective APK’s package name. The process of collecting the
RAM consumption is similar to the previous one with the
difference of the ADB command: adb dumpsys meminfo

command was used instead.

Finally, the response times, in our study, correspond
to the test duration in ms. We opt to not include code to
collect these values directly in the applications’ source code
because, as said before, we treated all the applications as
a black box. Therefore, we use the duration of each test
(i.e., the time taken by each application to complete each
function) to compare the different applications. This value
was measured using our Measurement and Testing Tool with
the help of the perf_hooks module from Node.js.In all the
tests, we tick the instant immediately before the test starts and
immediately after it ends. The subtraction between these two
values provided the test duration.

5. EXPERIMENTAL RESULTS

The main objectives of the experiment were to demonstrate the
applicability of the approach and the benchmarking framework
proposed and also to analyze and compare the different mobile
development tools (or frameworks). It is worth mentioning that
we repeated all experiments 6 times to observe the variability
of the results and the presented results correspond to the
average values of all 6 executions. The complete data and
results are available online'!.

5.1. Overall results

Figure. 4 presents a brief summary of our findings. Starting
with the average duration of the experiments, surprisingly
Ionic, the hybrid app, presents the best results overall with
Next.js and preact as close competitors. Next.js and preact
achieving low response times was expected since both devel-
opment tools are built with performance as the main require-
ment. Expo (React Native) presents the worst results, which
were unexpected since the Expo uses Native components.
Overall, regarding CPU and Memory consumption, Expo and
Ionic are the ones with the highest consumption. This was
also foreseen because they are not fully native. Although this
benchmark did not include a completely native application
(e.g., produced using Kotlin) we expect that it would have
better results (less RAM and CPU consumption and a lower
test duration) than both Ionic and Expo. The average values
also show that the web applications behave similarly in terms
of CPU and RAM usage. Svelte consuming slightly more CPU
than the React-based competitors was not a surprise as inter-
acting with the Real DOM is an expensive operation. Although
Svelte’s average test duration was slightly higher than the other
web applications, our findings show that the Virtual DOM used
by React.js or Vue may be unnecessary overhead for some use
cases [10]. Fast applications (i.e., applications with smaller test
duration) can be achieved without a DOM abstraction such as
the one used by React.js or Vue development tools. Moreover,
our findings also show that the React-based development tools
got similar results.

https://savery.vercel.app/

5.2. Results for Test Duration

Figure. 5 presents the average duration per test for each
application.

In the first test, t—-landing-1, we wait until the landing
page is presented after the application starts. By analyzing
the results, Expo is the application that takes more time to
start up. On the other hand, as expected, preact aces it by
taking less time to complete the same task. In the second test,
where they accept the permissions needed for the tests, the
web applications behave similarly. Since the hybrid and native
applications only need to accept two permissions take less time
(explained in Section 4-B3). Toggling the navbar (represented
in tests t—home-4 and t-home-5) presents similar results
in all applications but Expo. This was expected since the Expo
adds by default an animation that delays the navbar appearance
or removal.

Surprisingly, despite the same code being used in all React-
based applications, the Gatsby application failed to real-
ize, and the device went offline and timed out in this test
(t-bgSync-2). The other applications behave similarly. To
retrieve an image from the cache, in test t -bgSync—4, all the
web applications performed similarly (both native and hybrid).
Since the web applications react fast to lack of internet and
can quickly retrieve content from the cache means that Web
applications can already provide offline functionalities.

In the tests where native features such as Geolocation, Camera,
or accessing the Filesystem were used, web applications
behave similarly and better than the native application Expo
but overall worse than the Ionic.

Regarding loading content from outside sources, web applica-
tions take less time. We highlight the test t—feed-1 where
Next.js excels due to Incremental Static Regeneration. This
feature provided by Next.js allows the users to be always
presented with instant content (it is more detailed in [21]).
Conversely, the other applications took more than two seconds
to show the actual data.

Finally, we highlight the final tests that perform operations
on a table data structure. Expo crashes in the creation of
1000 rows. A Github issue'? confirmed our assumption that
rendering a large number of elements can result in sluggish-
ness and even crash a React Native application. Therefore,
this use case needs to be accounted for and implemented
carefully. React Native team published resources on how to
solve this problem!3. For improving the performance in React-
based solutions react-virtualized [27] can be used.

5.3. Results for CPU Usage

Overall, native and hybrid applications consume more CPU
than other applications. Figure. 6 presents the CPU usage com-
parison between Expo, Ionic, and preact, three different types
of applications (i.e., web, hybrid, and native respectively).
Expo uses less CPU in all tests with some minimal exceptions
that are not worth mentioning. Between Expo and Ionic, the

2https://github.com/facebook/react-native/issues/13413
Bhttps://reactnative.dev/docs/optimizing-flatlist-configuration

100000

m expo & gatsby 4 ionic x nextjs preact
-
10000
¥
Z
= a ¥ -!
= L] -
.S - 2 .
B -
a -
-
!. - Ps
= x = 2 1
(3 . [4 -
1000 X i T *
A - L]
: A
.!
s L
)
$ - £ ¥
.
‘ -
-
-
100 -
AR L B L ra A A U A A AL A
e gggggeeegeeege
£ S S & @ @ T T o
T TT OO0 66660 AARAAAAAE £
ccciinccccechHDbDdDDDDE EE
E§E8§E&LL TS RS g

® react

svelte

] =
"
° 2
§ 4Nk
- - - * il
- - - - *
° []
: > T A -
bla| (2 s - 3
° - -
31) i Z_: 2z, =
a
- s
a = “
3 x a

e
* 1@
0

<
<
=

ousel-1
ousel-2
ion-1
ion-2
ion-3
ion-4
ion-5

t-fileaccess-0

t-ca

t-ca
t-fileaccess-2
t-geolocation-0
t-geolocation-1

Figure 5. Average duration (ms) per test per application.

—expo —ionic

preact

CPU Usage (%)
N
B3

/

4

t-landing-1
t-landing-2

Figure 6. CPU Usage (%) per test between Expo, Ionic, and preact.

results are similar until the point where large amounts of
elements are added to the screen. From this point, Expo starts
using more CPU than Ionic. If the device on which these types
of applications are running does not have good specifications,
web-based alternatives prove to be an efficient solution.

Figure. 7 presents the comparison between Gatsby and Next.js,
two direct competitors to build web applications. Overall, the
CPU usage of the Next.js application is always slightly lower.
This is expected since both applications are React-based and
use the virtual DOM. At the beginning of the test, the Next.js
application is consuming more CPU. It might be because it
bundles more assets than Gatsby (observed in application size
in Section 5-E). However, in the second test, this value is
already lower than the competitor’s value and remains lower
during all tests except for two of them. Next.js proves to be
an efficient solution in terms of CPU usage as well.

Figure. 8 presents the comparison between Svelte and React.js.
The first one is a very promising tool that uses the real DOM
against the current standard to produce web applications and
the second one uses the virtual DOM. Similar to the previous
comparison, React.js starts with a higher CPU usage due to the
fact that it bundles more assets than Svelte and the JavaScript
code contained in these assets needs to be parsed by the
browser. Then, React.js reduces the usage but stays slightly
above the Svelte application. This only changes when the more

—gatsby —next

CPU Usage (%)
N

t-landing-1

Figure 7. CPU Usage (%) of Gatsby and Next.js per test.

—react —svelte

<
&
o
b5}
8
e

Figure 8. CPU Usage (%) of React and Svelte per test.

expensive operations start (i.e., scrolling in Carousel).This
heavier usage of the CPU on the Svelte application proves that
for applications requiring a higher number of interactions with
the DOM while fetching content from the internet, interacting
with the real DOM might be inefficient (refer to [10] for
more details). A similar situation happens with the operation
component tests.

5.4. Results for Memory Consumption

Figure. 9 presents all the RAM measures during one execution
(out of 6) for each application. We compared this same
figure in 6 different runs and they are all similar. Again, the
hybrid and native applications are the ones with the highest
consumption. On the other hand, web applications consume
similar values compared to each other.

700

—expo —gatsby fonic nextjs

preact —react svelte

500

IS
8
3

w
8
3

RAM Conusmption (MB)

200

L e Lol f .

Interval (~200ms)

Figure 9. RAM Consumption (MB) per application (ticks every 200 ms).

It is also observed that from one point, the RAM allocated by
Expo starts inflating and is only released when the application
crashes in the last operation component tests. This happened
because of its implementation: since we did not use any
performance optimizations for the other applications, to have
a fair comparison we opt to not implement any performance
optimizations for rendering lists in Expo. The Expo application
becomes sluggish and impossible to use after rendering several
elements first in the Carousel component, then in Feed and
Operation components. Although it appears that Expo releases
the memory in the last tests, this is not true, the application
ends up crashing in the last Operation component when
rendering 1000 rows to the screen. On the other hand, even
though Ionic allocates a huge amount of memory for some
tests it seems to perform efficiently and releases this memory
when not needed.

5.5. Results for Static Metrics

Table I presents our findings after analyzing the static metrics
data. Although this was not the primary focus of our bench-
mark, we opt to collect this type of metrics and discuss them
to prove that our framework is extensible not only to gather
execution metrics but also metrics related to the source code
and the development process.

TABLE I
STATIC METRICS FOR EACH APPLICATION.

App Size (KB) LoC Total number of Avg. build
name dependencies (dev) time (s)

Expo 52892.0 1359 29 (3) 198.00
Gatsby 211.0 1564 11 (6) 39.38
Tonic 5301.0 1737 38 (12) 61.53
Next.js 243.0 1658 9 (5) 28.12
Preact 60.5 1657 13 (8) 85.33
React.js 190.0 1610 13 (7) 19.71
Svelte 54.2 1458 13 (7) 23.30

Regarding the application size, Svelte presented the smallest
value (around 54.2 KB). Since Svelte compiles everything at
build time, it does not need to bundle the whole library code
to make computations at runtime as React and many other
development tools do [10]. Consequently, Svelte application

size for small applications is lower than a react-equivalent
application.preact has the smallest size of all the React-based
applications since preact is a minimalistic version of React.js.
The Ionic application size is SMB which is great for a Native
Android application. On the other hand, Expo is 10x larger.
Since we were using Expo instead of plain React Native, to
build the application, the Expo Cloud system was mandatory
to build the application. However, this can be avoided by
ejecting the Expo application. After the application is ejected,
the APK can be built locally, and perform certain optimizations
to reduce the application size (also, the build times will be
lower than with the expo cloud system).

Regarding the dependencies number, Ionic required a high
number to transform a valid React.js app (13 dependencies)
into a valid hybrid app (38 dependencies).

Svelte, which presented better Build Time results than Next.js
but is inferior to Craco, uses a bundler tool called Rollup. The
comparison between the different JavaScript bundler tools is
out of the scope but a great comparison is provided in [16].

6. THREATS TO VALIDITY

In this section, we discuss the points that threaten the validity
of our approach and obtained results.

« Representativeness of the Reference Application Spec-
ification: A major flaw in several studies is the lack of
representativeness of the applications under assessment.
To mitigate this issue, we analyzed the most popular ap-
plications and their features. Then, we built a Reference
Application Specification that covers the majority of the use
cases observed.

o Applications developed in-house: Although this might
introduce some bias in the assessment, this will be mitigated
once the project is open to the community. Developers will
then be able to improve or fix the existing implementations
and add new development tools.

« Not including application completely native: Our bench-
mark included React Native but through a cross-platform
tool. A complete native application is not included due
to time constraints, but this does not preclude the future
inclusion of the fully native app. Also, it does not affect the
observations on the evaluated tools.

7. CONCLUSION AND FUTURE WORK

This paper proposes a new framework for assessing differ-
ent mobile application development tools considering several
properties, such as performance, reliability, or security. To
demonstrate our framework, we conducted a performance
benchmark and compared seven popular development tools.
The results show that our framework can indeed be used
to compare different development tools. Our findings also
showed that Ionic was heavy Memory and CPU presented
the fastest results. Also, tools that claimed to be built with
performance as first requirement (e.g., Next.js and preact) were
the fastest among the web applications tested.

As future work, we are planning to disseminate our study
through the community by open-sourcing the project. Also,

we plan to perform more rounds of the benchmark including
more development tools (and improving the existing ones) in
different Android devices. In addition, a more ambitious goal
for the future is to support iOS development tools.

ACKNOWLEDGMENT

This work is funded by the FCT — Foundation for Science and
Technology, .LP/MCTES through national funds (PIDDAC),
within the scope of CISUC R&D Unit — UIDB/00326/2020
or project code UIDP/00326/2020; and by Project “NEXUS
Pacto de Inovacdo — Transi¢do Verde e Digital para Trans-
portes, Logistica e Mobilidade”. ref. No. 7113, supported by
the Recovery and Resilience Plan (PRR) and by the European
Funds Next Generation EU, following Notice No. 02/C05-
101/2022.PC645112083-00000059 (project 53), Component 5
- Capitalization and Business Innovation - Mobilizing Agendas
for Business Innovation.

REFERENCES

[1] Andreas Biorn-Hansen, Tim A. Majchrzak, and Tor-
Morten Gronli. Progressive Web Apps: The Possi-
ble Web-native Unifier for Mobile Development:. In
Proceedings of the 13th International Conference on
Web Information Systems and Technologies, pages 344—
351, Porto, Portugal, 2017. SCITEPRESS - Science and
Technology Publications.

[2] Emmanuel Cecchet, Veena Udayabhanu, Timothy Wood,
and Prashant Shenoy. Benchlab: an open testbed for
realistic benchmarking of web applications. In Proceed-
ings of the 2nd USENIX conference on Web application
development, pages 37-48. USENIX Association, 2011.

[3] Julia Chan. Top Apps Worldwide for January 2021 by
Downloads.

[4] Lukas Dagne. Flutter for cross-platform App and SDK
development. page 37.

[5] David Fortunato and Jorge Bernardino. Progressive web
apps: An alternative to the native mobile apps. In 2018
13th Iberian Conference on Information Systems and
Technologies (CISTI), pages 1-6, 2018.

[6] Rebecca Fransson, Alexandre Driaguine, and Johan
Hagelbdck. Comparing Progressive Web Applications
with Native Android Applications. page 59, 2017.

[7] Rasmus Fredrikson. Emulating a Native Mobile Experi-
ence with Cross-platform Applications. page 19.

[8] Abhi Gambhir and Gaurav Raj. Analysis of Cache in
Service Worker and Performance Scoring of Progressive
Web Application. In 2018 International Conference on
Advances in Computing and Communication Engineer-
ing (ICACCE), pages 294-299, Paris, June 2018. IEEE.

[9] Michael Gonsalves. Evaluating the mobile development
frameworks Apache Cordova and Flutter and their im-
pact on the development process and application char-
acteristics. Thesis, June 2019.

[10] Rich Harris. Virtual DOM is pure overhead, January
2021.

[11] Kelsey L. Johnson and Mark M. Misic. Benchmarking:
a tool for Web site evaluation and improvement. Internet
Research, 9(5):383-392, December 1999.

Karama Kanoun and Lisa Spainhower. Dependability

benchmarking for computer systems, volume 72. Wiley

Online Library, 2008.

David Kirkpatrick. Google: 53% of mobile users aban-

don sites that take over 3 seconds to load.

[14] John Koetsier. Here Are The 10 Most Downloaded Apps
Of 2020.

[15] krausest. krausest/js-framework-benchmark: A compar-

ison of the perfomance of a few popular javascript

frameworks, October 2020.

Sonja Laurila. Comparison of JavaScript Bundlers.

page 55.

[17] Kim Maida. How to Manage JavaScript Fatigue, Decem-

ber 2020.

Ivano Malavolta. Beyond native apps: web technologies

to the rescue! (keynote). In Proceedings of the Ist In-

ternational Workshop on Mobile Development - Mobile!

2016, pages 1-2. ACM Press, 2016.

Ivano Malavolta, Giuseppe Procaccianti, Paul Noorland,

and Petar Vukmirovic. Assessing the Impact of Service

Workers on the Energy Efficiency of Progressive Web

Apps. In 2017 IEEE/ACM 4th International Conference

on Mobile Software Engineering and Systems (MOBILE-

Soft), pages 35-45. IEEE, May 2017.

mathieuancelin. mathieuancelin/js-repaint-perfs: Play-

ground to test repaint rates of JS libs, October 2020.

[21] Lee Robinson. A Complete Guide To Incremental Static
Regeneration (ISR) With Next.js.

[22] Will Sobel, Shanti Subramanyam, Akara Sucharitakul,
Jimmy Nguyen, Hubert Wong, Arthur Klepchukov, Shee-
tal Patil, Armando Fox, and David Patterson. Cloudstone:
Multi-platform, multi-language benchmark and measure-
ment tools for web 2.0. In Proc. of CCA, 8:228, 2008.

[23] Farid Said Tahirshah. Comparison between Progressive
Web App and Regular Web App. page 69.

[24] TechEmpower. TechEmpower/FrameworkBenchmarks:
Source for the TechEmpower Framework Benchmarks
project, October 2020.

[25] the benchmarker. the-benchmarker/web-frameworks:
Which is the fastest web framework?, October 2020.

[26] Lionel Valdellon. 60 Most Popular Apps on the App

Store and Google Play.

Brian Vaughn. bvaughn/react-virtualized, May 2021.

original-date: 2015-11-03T00:48:07Z.

[28] Michiel Willocx, Jan Vossaert, and Vincent Naessens.

Comparing performance parameters of mobile app devel-

opment strategies. In Proceedings of the International

Conference on Mobile Software Engineering and Sys-

tems, pages 38-47, 2016.

Katinka Wolter, Alberto Avritzer, Marco Vieira, and Aad

Van Moorsel. Resilience assessment and evaluation of

computing systems. 2012.

(12]

(13]

[16]

(18]

(19]

[20]

[27]

[29]

