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Abstract. The increasing usage of Artificial Intelligence (AI) models,
especially Deep Neural Networks (DNNs), is increasing the power con-
sumption during training and inference, posing environmental concerns
and driving the need for more energy-efficient algorithms and hardware
solutions. This work addresses the growing energy consumption problem
in Machine Learning (ML), particularly during the inference phase. Even
a slight reduction in power usage can lead to significant energy savings,
benefiting users, companies, and the environment. Our approach focuses
on maximizing the accuracy of Artificial Neural Network (ANN) mod-
els using a neuroevolutionary framework whilst minimizing their power
consumption. To do so, power consumption is considered in the fitness
function. We introduce a new mutation strategy that stochastically rein-
troduces modules of layers, with power-efficient modules having a higher
chance of being chosen. We introduce a novel technique that allows train-
ing two separate models in a single training step whilst promoting one of
them to be more power efficient than the other while maintaining similar
accuracy. The results demonstrate a reduction in power consumption of
ANN models by up to 29.2% without a significant decrease in predictive
performance.

Keywords: Evolutionary Computation · Neuroevolution · Energy Ef-
ficiency

1 Introduction

As the demand for Machine Learning (ML) continues to grow, so does the elec-
trical power required for training and assessment. According to Patterson et al.,
GPT-3, the model behind ChatGPT, consumes 1287 MWh, corresponding to
approximately 552 tons of CO2 equivalent emissions just for training during 15
days [16]. In addition to the environmental impacts of this power usage, it can
also burden individual users and organizations, who may face high energy costs.
Therefore, finding ways to reduce the power consumption of ML processes is
becoming increasingly important.

Artificial Neural Networks (ANNs) are a type of ML model inspired by bio-
logical neural networks [19]. They consist of multiple layers of artificial neurons,
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which are functions that take input data and produce an output based on it.
The connections between neurons have an associated weight value modified in
the training process to allow the network to “learn” how to solve a specific task.
Deep Neural Networks (DNNs) are ANNs with a considerable number of hidden
layers [9,10]. This allows them to avoid the feature engineering step, thus auto-
matically discovering the representations needed for classification and achieving
higher accuracy values. Training and executing ANNs is power-intensive due to
the required computational resources.

Evolutionary Algorithms (EAs) are algorithms inspired by natural selection
[6,17]. To evolve solutions over multiple generations, they utilize mechanisms,
such as selection, crossover, and mutation. The process begins with a randomly
initialized population whose evolution is steered by a fitness function that mea-
sures the quality of an individual. In conjunction with the mentioned evolution-
ary mechanisms, the process is predicted to culminate in near-optimal individ-
uals.

Neuroevolution (NE) uses EAs to generate and optimize ANNs for a given
task [7]. It can optimize the ANN’s architecture and hyperparameters.

We hypothesise that we can address the energy inefficiency issue by us-
ing NE to search for well-suited models for a particular problem while be-
ing power-efficient. Fast Deep Evolutionary Network Structured Representation
(Fast-DENSER) is a method that utilizes an Evolution Strategy (ES) to find op-
timal ANN models by using their accuracy as the fitness function, thus guiding
the search towards accurate models [2].

In this work, we propose novel approaches integrated into Fast-DENSER to
find power-efficient models. We have incorporated a new approach to measure
the power consumption of a DNN model during the inference phase. This metric
has been embedded into multi-objective fitness functions to steer the evolution
towards more power-efficient DNN models. We also introduce a new mutation
strategy that allows the reutilization of modules of layers with inverse probability
to the power usage of a module, thus (re)introducing efficient sets of layers in
a model. We propose the introduction of an additional output layer connected
to an intermediate layer of a DNN model and posterior partitioning into two
separate models to obtain smaller but similarly accurate models that utilize less
power. To the best of our knowledge, no prior works employ a similar approach.

The experiments are analyzed through two metrics: accuracy and mean power
usage during the validation step. The motive for using the power usage of the
validation step instead of the training step is that the training is usually per-
formed only once. Contrarily, the inference is executed multiple times. Moreover,
inference does not necessarily occur on the machine where the training was con-
ducted, which is vital since many devices are not optimized for these tasks.

The results of this work show that it is possible to have DNN models with
substantially inferior power usage. The best model found regarding power con-
sumes 29.18 W (29.2%) less whilst having a tiny decrease in performance (less
than 1%).
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This work is structured as follows: Section 2 provides background informa-
tion on ANNs, and NE. Section 3 introduces our methodologies to enhance the
power efficiency of ANN models. Section 4 outlines the experimental setup. Sec-
tion 5 presents the experimental results. Finally, in Section 6, we provide our
conclusions and prospects for future research.

2 Background

2.1 Artificial Neural Networks

Artificial Neural Networks are a type of supervised ML inspired by biologic
neural networks [19]. An ANN consists of connected processing units known
as neurons. The connections follow a specific topology to achieve the desired
application. A neuron’s input may be the output of other neurons, external
sources, or itself. Every connection has an associated weight, allowing the system
to simulate biological synapses. A weighted sum of the inputs is computed at
a given instant, considering the connection weights. It is also possible to sum
a bias value to this. An activation function is applied, and thus, the neuron’s
output is obtained.

DNNs are ANNs composed of many hidden layers. Due to this, DNNs can
avoid the feature engineering step – which usually requires human expertise –
by automatically discovering the representations needed for classification [9,10].
Thus, they can model more complex relationships and achieve higher accuracy
on tasks requiring pattern recognition. The development and usage of DNNs
have substantially increased due to the widespread deployment of more capable
hardware, such as Graphics Processing Units (GPUs) [3].

2.2 Neuroevolution

NE is the application of evolutionary techniques to search for DNN models. It is
used to optimize the structure and weights of DNNs to improve their performance
on specific tasks, such as image classification and natural language processing.
NE is a gradient-free method based on the concept of population [7]. It allows
for the simultaneous exploration of multiple zones of the search space through
parallelization techniques at the cost of taking a usually long time to execute
since each individual of the population is a DNN that requires training and
testing.

Deep Evolutionary Network Structured Evolution (DENSER) is a neuroevo-
lutionary framework that allows the search of DNNs through a grammar-based
neuroevolutionary approach that searches both network topology and hyperpa-
rameters [1].

The developed DNNs are structured according to a provided context-free
grammar. DENSER uses Dynamic Structured Grammatical Evolution (DSGE)
as the strategy that allows the modification of the network topology. DSGE is
built upon Structured Grammatical Evolution (SGE), with the main differences
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of allowing the growth of the genotype and only storing encoded genes [11].
Allied with dynamic production rules, DSGE allows the creation of multiple-
layer DNNs. SGE proves to perform better than Grammatical Evolution (GE),
and DSGE proves to be superior to SGE [12]. The individuals of the evolutionary
process are represented in two levels: the outer level encodes the topology of the
ANN, and the inner one encodes its hyperparameters.

Fast-DENSER was developed to overcome some limitations verified on
DENSER: evaluating the population consumes a considerable amount of time,
and the developed DNNs are not fully trained [2]. Fast-DENSER is an extension
of DENSER on which the evolutionary engine is replaced by a (1 + λ)-ES. This
modification dramatically reduces the required number of evaluations per gener-
ation, enabling executions 20 times faster than the original version of DENSER.

Moreover, individuals are initialized with shallow topologies, and the stop-
ping criterion is variable to allow an individual to be trained for a more extended
time.

On the CIFAR-10 dataset [8], DENSER obtained models with an accuracy
higher than most of the state-of-the-art results, and on the CIFAR-100 [8], it
obtained the best accuracy reported by NE approaches. Fast-DENSER proves to
be highly competitive relative to DENSER, achieving execution times far inferior
to its predecessor. Additionally, Fast-DENSER can develop DNNs that do not
require additional training after the evolutionary approach and are, therefore,
ready to be deployed.

3 Approach

This section outlines the approaches developed to address the challenge of re-
ducing power consumption in ANN models.

3.1 Power Measurement

Measuring the power a GPU consumes is fundamental when developing ap-
proaches that minimize a model’s energetic footprint. The ecosystem of de-
veloping a DNN model mainly consists of three phases: design, training, and
deployment.

The design phase uses some energy, be it with manual design techniques or
automatic methods. DENSER is a NE framework and, as such, consumes energy
in the search for optimal models, and such consumption might be on par with
the energy used on manual, trial-and-error methods. Reducing the energy used
in this phase is out of the scope of this work.

The training of a DNN model is an expensive process in which a model is
trained on a large dataset to learn to predict unseen instances, taking a significant
toll on technological companies’ and individuals’ power bills. While diminishing
energy consumption during the training process remains a significant objective,
it is worth noting that the inference phase in DNNs holds vital importance
during software deployment, as the software obtains results through inference.
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This becomes particularly relevant when considering the potential utilization of
these models by millions of users. As such, tackling the minimization of energy
consumption in this step is vital. For example, it is estimated that 80% to 90%
of NVIDIA’s ML computations are inference processing [13] and about 60% of
Google’s ML energy usage is for inference with the remaining portion being for
training [16].

Considering this, our work focuses on the power consumption in the inference
step to allow a large deployment, thus saving more computational resources and
energy and, on another layer, reducing financial expenses and reducing environ-
mental impact.

3.2 Model Partitioning

Training a DNN model requires a substantial amount of time and considerable
energy. Creating a process on which a single model is trained but can be split
posteriorly into two models would reduce the time spent on training two models
by, at most, two times. Pushing one of those two models into being smaller than
the other may produce a simpler, similarly accurate, yet more power-efficient
model.

Following this line of reasoning, we propose a modification to Fast-DENSER
on which an extra output layer is connected to an intermediate layer of the model.
The two-output model (Figure 1a) is trained to optimize for two outputs. At the
validation step, it is split into left (Figure 1b) and right (Figure 1c) partitions.
These partitions are disjoint and can be evaluated similarly to how the complete
model is evaluated, and metrics such as accuracy and power consumption can
be obtained.

The intermediate point is a marker for where the additional output is added
at the model partitioning step. We can, for example, consider a model as an
array of layers, and the mentioned marker is the index of the layer to which the
additional output is connected. This point can be assigned to any intermediate
layer of the model. The input and output layers are excluded to prevent useless
and redundant partitions.

Since the maximum allowed value of the point is equal to the number of layers
of the model minus one, the grammar initializer – which generates individuals
according to the grammar – and the mutation mechanism for the macrostruc-
ture level of DENSER – which performs mutations on the hyperparameters of
the individuals – were modified to consider the maximum number of layers of the
model dynamically. To introduce the intermediate point in the evolutionary pro-
cess, it was considered part of the macrostructure and, as such, as a rule of the
grammar. The introduced rule is <middle_point> ::= [middle_point,int,1,0,x],
meaning that one integer value is obtained with the lower limit being zero. The
upper limit is an arbitrary variable x that is replaced at any instance by the
maximum number of layers of the model minus one.
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(a) Full model

(b) Left partition (c) Right partition

Fig. 1: Example of a two-output model and its left and right partitions, with the
layer marked by the intermediate point in red.
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3.3 Fitness Functions
To consider accuracy and power consumption in the fitness function, some func-
tions were developed to take these parameters into account. Since our objective is
to maximize accuracy but minimize power consumption, we consider the inverse
of the latter, i.e., power−1.

Considering our approach of the division of a DNN model into two compa-
rably accurate partitions, with one smaller than the other, all of the presented
fitness functions consider the accuracy of both partitions, intending to enhance
both. These fitness functions only focus on minimizing power consumption within
the larger partition, which is anticipated to experience higher power usage.

Firstly, as presented in Equation 1, we developed a fitness function that
sums the accuracy of both partitions with the inverse of the power usage of the
left partition. The accuracy values have an upper limit, consisting of minimum
satisfiable values for the models, i.e., values below the state-of-the-art [15] to
allow some tradeoff between accuracy and power consumption. The upper limit
is higher on the right partition (0.85) than on the left partition (0.80) since it
is desired that the right partition obtains a higher accuracy value, if possible.
The goal of this function design was to obtain satisfiable models and, after that,
guide the evolutionary process only by their power usage to minimize the power
usage of the models. After testing, we observed that the power usage typically
falls within the range [30, 100] W, which, when inverted, resulted in values too
small to be able to properly steer the evolutionary process.

f1 = min(0.80, accleft) + min(0.85, accright) + power−1
left (1)

Considering this, another fitness function was designed (Equation 2), where
the power usage is multiplied by 10, thus giving it a more considerable weight
since power usage values for the used GPU typically fall within the [30, 100]
W range. This weight is closely related to the used GPU and should be mod-
ified accordingly. Preliminary experiments showed that although the evolution
managed to somewhat minimize the power usage of the models, their accuracy
remained around the chosen upper limits. Since this is not an optimal behaviour,
a function that does not limit accuracy was developed.

f2 = min(0.80, accleft) + min(0.85, accright) + 10 ∗ power−1
left (2)

As shown in Equation 3, this fitness function considers only the accuracy
of the partitions when both are below a threshold. After any of them surpass
their respective threshold, power consumption is also considered, with a weight
of 10. This means that, at first, evolution is only steered by the accuracy of the
models. When satisfiable models are obtained, power consumption starts being
considered to evolve both accurate and energy-efficient models.

f3 =
{

accleft + accright if accleft ≤ 0.80 ∧ accright ≤ 0.85
accleft + accright + 10 ∗ power−1

left, otherwise
(3)
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3.4 Module Reutilization

Internally, Fast-DENSER considers modules of layers on each individual from
which a DNN is then unravelled. One way to encourage the evolution of energy-
efficient models is to provide an individual with a set of layers that are known
to be efficient. As such, a scheme of module reutilization is proposed through
the design of new mutation operators and the addition of an archive of modules
and their respective power consumption.

Since this strategy only considers power consumption, it is expected that
inaccurate models may sometimes be generated. Due to the nature of the evo-
lutionary process and the used fitness function (Equation 3), inaccurate models
are intensely penalized and, as such, discarded in favour of better ones.

Whenever a module of layers is randomly generated or modified, its power
consumption is measured. To do this, a temporary model is created, which con-
sists of an input layer, the module’s layers, and an output layer. Since the mod-
ule’s accuracy is irrelevant, this temporary network is neither trained nor fed
with a proper dataset, i.e., it is given random values instead of a dataset.

An operator of mutation, reuse module, was introduced to take advantage of
this information. It selects a module with a probability inversely proportional
to its power consumption, i.e., modules with inferior power consumption have
a superior probability of being chosen. As shown in Equation 4, to obtain the
probability of a module i being chosen, we divide the inverse of its power, poweri,
by the sum of the inverse power of all modules, with n the number of saved
modules. The selected module is introduced in a randomly chosen position. An
operator that randomly removes a module from an individual is also introduced
to counteract the described operator.

P (i) =
1

poweri∑n
j=0

1
powerj

(4)

4 Experimental Setup

We performed two experiments: the baseline, which uses the plain version of
Fast-DENSER with accuracy as the fitness function, and an experiment where
our proposed approaches were applied, using the fitness function presented in
Equation 3. Table 1 presents the experimental parameters used across the ex-
periments. Note that DSGE-level rate refers to the probability of a grammar
mutation on the model’s layers, the Macro layer rate pertains to the probabil-
ity of a grammar mutation affecting the macrostructure, encompassing elements
such as hyperparameters or intermediate point mutation, and the Train longer
rate is the probability of allocating more time for an individual to be trained.
The rates of reusing and removing modules do not apply to the baseline experi-
ment. The experimental analyses consider the Mean Best Fitness (MBF) over 5
runs.

The experiments were performed on a server running Ubuntu 20.04.3 LTS
with an Intel Core i7-5930K CPU with a clock frequency of 3.50GHz, 32 GB
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of RAM, and an NVIDIA TITAN Xp with CUDA 11.2, CuDNN 8.1.0, Python
3.10.9, Tensorflow 2.9.1 and Keras 2.9.0 installed as well as the pyJoules 0.5.1
Python module with the NVIDIA specialization.

Table 1: Experimental parameters
Evolutionary Parameter Value

Number of runs 5
Number of generations 150

Maximum number of epochs 10 000 000
Population size 5
Add layer rate 25%

Reuse layer rate 15%
Remove layer rate 25%
Reuse module rate 15%

Remove module rate 25%
Add connection 0%

Remove connection 0%
DSGE-level rate 15%
Macro layer rate 30%
Train longer rate 20%

Train Parameter Value
Default train time 10 min

Loss Categorical Cross-entropy

All experiments used the Fashion-MNIST dataset [18], which was developed
as a more challenging replacement for the well-known MNIST dataset [5] by
swapping handwritten digits with images of clothes such as shirts and coats,
aiming at a more realistic and relevant benchmark. It is a balanced dataset
consisting of a collection of 60 thousand examples for training and 10 thousand
for testing, where each example is a 28x28 grey-scale image representing clothing
items belonging to one of ten classes.

Since power usage is essential in making NE physically plausible, a func-
tion to measure power was developed using the pyJoules library. Its pseudocode
can be analyzed in Algorithm 1, with meter being the library tool that facili-
tates the measurement of energy consumed, and start and stop the functions
that allow controlling it. It wraps a function call (func, with corresponding
arguments args) while measuring the GPU energetic consumption during its
execution and the call’s duration. This measurement is converted from milli-
Joule to Watt and appended to the array of measures. These steps are per-
formed n_measures times, and then the mean value is calculated. In our work,
we considered n_measures = 30. The described function was integrated with
Fast-DENSER on the model’s validation step to measure the power used in the
inference phase.
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Algorithm 1 Power Measure Algorithm
Require: func, args, n_measures

measures← ∅
i← 1
while i ≤ n_measures do

start(meter)
output← func(args)
stop(meter)
(energy, duration)← measure(meter)
measure← energy/1000/duration ▷ Convert mJ to W
measures← measures ∪measure
i← i + 1

end while
mean_power ← mean(measures)
return (output, mean_power)

It should be noted that ambient conditions of the server’s location, such
as temperature and humidity, were not considered, as well as other external
variables, and no other processes used the GPU during the execution of these
experiments.

5 Results

This section compares the results from the baseline experiment and the experi-
ment where our approaches were applied. The results show the mean accuracy
and the mean power consumption, which are derived from the best individuals
by fitness over 5 separate runs.

Since the results did not follow a normal distribution and the samples were
independent, the Kruskal-Wallis non-parametric test was employed to deter-
mine if significant differences existed among the various approach groups. When
significant differences were observed, the Mann-Whitney post-hoc test with Bon-
ferroni correction was applied. We considered a significance level of α = 0.05 in
all statistical tests.

Figure 2 compares the accuracy obtained in the two experiments. The exper-
iments present a similar accuracy until generation 70, where it becomes possible
to observe a clear difference between them. The baseline experiment achieves a
higher accuracy than the other experiment, and, relative to that experiment, it
is visible that the smaller model obtains a marginally smaller accuracy than the
larger one. Table 2 provides statistical analysis, and Table 3 showcases statistical
values of the experiments. It is possible to see that, relative to the median val-
ues, the proposed method achieves inferior accuracy and that the smaller model
obtains the worst accuracy.

Figure 3 presents a comparison of the power consumption measured in the
two experiments. The baseline predominantly has an increasing behaviour, which
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Fig. 2: Evolution of the accuracy over 150 generations.

Table 2: Pair-wise comparison of used groups on accuracy metric, using Mann-
Whitney U post-hoc test with Bonferroni correction with bold values denoting
statistically significant differences.

Baseline Proposed Method

Metric Accuracy Accuracyleft Accuracyright

Baseline Accuracy

Accuracyleft 1.09× 10−4Proposed
Method

Accuracyright 1.15× 10−7 1.16× 10−4

can be explained by the fact that the evolution is only being guided by accu-
racy, i.e., there are no incentives to favour models that consume less power.
Contrarily, the proposed method obtained relatively stable results over the evo-
lutionary process, with the smaller model presenting marginally lower results
than its counterpart. Table 4 provides statistical analysis, and Table 5 show-
cases statistical values of the experiments. We can conclude that relative to the
median values, the proposed method achieves inferior power consumption and
that the smaller model is the most power-efficient.

6 Conclusion

In this work, we developed approaches integrated into Fast-DENSER, which
empower it to generate DNN models with better power efficiency.

The most fundamental approach consists of measuring the power consumed
by the GPU on the inference phase of the DNN. We use the measure provided
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Table 3: Mean value, standard deviation, median and difference to baseline me-
dian of the accuracy of the experiments.

Experiment Metric Mean SD Median Diff. to Baseline

Baseline Accuracy 0.904 0.037 0.916

Proposed
Method

Accuracyleft 0.902 0.024 0.911 −0.005

Accuracyright 0.895 0.034 0.907 −0.009

Fig. 3: Evolution of the power consumption over 150 generations.

by the GPU to do this. Using this metric, we developed multi-objective fitness
functions that steer the evolutionary process in a path that minimizes power
consumption.

We created a process by which an additional output is added to a DNN model
and, after being trained, the model is split into two models – a larger one which
consists of all the layers and a smaller one composed of the layers up to the
one where the additional output is connected to. This allows us to create models
tuned for environments with fewer resources, such as smartphones, while creating
more power-intensive models tuned for environments with more resources, such
as servers. This is performed in one training, thus taking less time to develop the
two models and saving energy in the process. No prior work has been identified
that employs a similar approach.

We introduced a new mutation strategy to Fast-DENSER that allows the
reutilization of sets of layers – modules – according to the power consumption
of the modules. We stochastically favour the reintroduction of modules in a
model according to the inverse of the power they consume, thus incorporating
power-efficient modules into a model.
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Table 4: Pair-wise comparison of used groups on power metric, using Mann-
Whitney U post-hoc test with Bonferroni correction with bold values denoting
statistically significant differences.

Baseline Proposed Method

Metric P ower P owerleft P owerright

Baseline P ower

P owerleft 2.72× 10−29Proposed
Method

P owerright 8.84× 10−32 3.67× 10−19

Table 5: Mean value, standard deviation, median and difference to baseline me-
dian of the experiments power consumption.

Experiment Metric Mean SD Median Diff. to Baseline

Baseline P ower 97.80 W 18.84 W 99.89 W

Proposed
Method

P owerleft 71.92 W 1.60 W 72.20 W −27.69 W

P owerright 70.40 W 1.30 W 70.71 W −29.18 W

The results obtained by our proposals show that we can reduce the power
consumption of the ANNs without compromising their predictive performance,
showing that it is possible to minimize power consumption while, at the same
time, maximizing accuracy through the usage of NE frameworks such as Fast-
DENSER. The best model found regarding power consumes 29.18 W (29.2%)
less whilst having a tiny decrease in performance (less than 1%), proving that
a small trade-off on accuracy can yield a considerable reduction in the power
consumed by the model.

6.1 Future Work

We introduced novel approaches and performed a baseline experiment and an
experiment where the mentioned strategies were applied. It could be valuable to
explore other approaches and perform more experiments in the future.

To better understand the individual impact of each strategy on the efficiency
of the models, it would be valuable to perform experiments with the employment
of only one strategy at a time. It would also be interesting to vary the fitness
functions (e.g., the weights used in them) and to vary evolutionary parameters
such as the probabilities of the mutations.

One of the most important constraints of our work is GPU-time due to
the amount of operations required to train every model of each generation. To
minimize the required time, it would be noteworthy to research how to employ
training-less strategies in Fast-DENSER, i.e., use strategies that estimate the
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accuracy of a model without training it [4,14]. Such strategies would allow us to
perform more experiments in less time, saving energy in the design process.
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