Risk Prediction of Heart Failure Decompensation Events in Multiparametric Feature Spaces



Cardiac function deterioration of heart failure patients is frequently manifested by the occurrence of decompensation events. One relevant step to adequately prevent cardiovascular status degradation is to predict decompensation episodes in order to allow preventive medical interventions. In this paper we introduce a methodology with the goal of finding relevant feature spaces from multiple physiological parameters which may have predictive value in decompensation events. The best performance was obtained for the feature space comprising the following features: mean weight, standard deviation of the blood pressure and mean of extra-thoracic impedance in a time window of 20 days. Results were achieved by applying leave-one-out validation and correspond to a geometric mean of 88.32%. The obtained performance suggests that the methodology has the potential to be used in decision support solutions and assist in the prevention of this public health burden.


Physiology;Heart rate;Impedance;Standards;Blood pressure;Market research


2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2018


Cited by

No citations found