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Abstract—In pursuit of faster development cycles, companies
have favored small decoupled services over monoliths. Following
this trend, distributed systems made of microservices have grown
in scale and complexity, giving rise to a new set of operational
problems. Even though this paradigm simplifies development,
deployment, management of individual services, it hinders system
observability. In particular, performance monitoring and analysis
becomes more challenging, especially for critical production
systems that have grown organically, operate continuously, and
cannot afford the availability cost of online benchmarking.
Additionally, these systems are often very large and expensive,
thus being bad candidates for full-scale development replicas.

Creating models of services and systems for characterization
and formal analysis can alleviate the aforementioned issues. Since
performance, namely response time, is the main interest of this
work, we focused on bottleneck detection and optimal resource
scheduling. We propose a method for modeling production
services as queuing systems from request traces. Additionally,
we provide analytical tools for response time characterization
and optimal resource allocation. Our results show that a simple
queuing system with a single queue and multiple homogeneous
servers has a small parameter space that can be estimated in
production. The resulting model can be used to accurately predict
response time distribution and the necessary number of instances
to maintain a desired service level, under a given load.

Index Terms—Modeling; Performance; Microservices; Observ-
ability; Tracing; Availability.

I. INTRODUCTION

In dynamic, elastic production environments that scale in
and out rapidly, tracking microservices performance can be a
huge challenge. Black-box monitoring can be effective and
light-weight, such as in our previous work [1]. However,
the majority of these solutions lack an important feature:
identifying and predicting quality of service. Despite their
collected metrics, notifications and configurable dashboards,
the burden of analysis rests on the administrators. We propose
modeling components, as homogeneous multi-server queues,
enabling a statistical characterization of fundamental perfor-
mance metrics, such as latency and throughput. Moreover,
since queues can be composed into networks, this approach
can serve as the building block to model systems of mi-
croservices. To accurately model individual services, we need
detailed measurements of their performance. Since we want
to capture real workload conditions, we resort to tracing [2].

With the additional information given by tracing, we are
able to create and update a dynamic dependency model for

a system of microservices. This allows us to extract the de-
pendencies between service endpoints, and, more importantly,
we are able to model the performance of each microservice.
The objective is simple, but very ambitious: obtain the optimal
zone of operation for each service. This can lead to multiple
pathways, such as understanding when to scale in or out,
reducing the infrastructure cost, and ensuring the service level
agreements (SLAs). Additionally, the possibility of pinpoint-
ing bottlenecks in the system without stressing it, is a major
advantage for system administrators.

In this paper, we develop and instrument a microservice-
based system, and resort to tracing, to model microservices
as multi-server queues (M/M/c). This makes it possible to
predict the distribution of response times and the optimal
operation zone of a service, as well as determine how many
instances would be needed to maintain the desired service
level for a given workload. Moreover, having a performance
model makes it possible to establish a notion of maximum
capacity, and is the first step towards full system performance
optimization and bottleneck detection. Our results demonstrate
that although simple, our model can accurately predict the
behavior of a microservice, more precisely, the response
time distribution, without making the modeling and parameter
estimation too complicated or too costly. Consequently, this
type of model is adequate for online estimation and analysis.

The rest of the paper is organized as follows. Section II
describes the queue-based model we use to characterize mi-
croservices. Section III describes the experimental setting.
Section IV shows the results of our experiments. Section V
evaluates the results. Section VI presents the related work.
Section VII concludes the paper.

II. PERFORMANCE MODELING

To analyze the performance of a system, and predictions
its behavior, a suitable model is necessary. The detection of
bottlenecks requires a notion of capacity limits, as a way to
compare two services in an execution path, and to predict
performance changes in response to resource allocation. In
the context of microservice-based systems, resource allocation
for scaling purposes is usually done at the instance level,
with virtual machines or containers. If those requirements are
fulfilled, it becomes possible to determine analytically which
microservices have insufficient or excessive capacity.978-1-5386-7659-2/18/$31.00 c©2018 IEEE



Our requirements for a model are the ability to represent
response time, throughput and parallelism, as we intend to
use it for online modeling. The analytical model needs to be
composable in some way, to represents the resulting system.

Queueing systems are ideal for our use case, describing the
aspects and metrics we are interested in, and being composable
as queueing networks. It has been demonstrated that when a
large number of customers independently make requests to a
service, the arrival process will be Markovian [3]. We propose
modeling microservices as M/M/c queues.

Our parameter space is quite small and intuitive, {λ, µ, c}.
Here, λ and µ represent the rate parameters for the ex-
ponentially distributed inter-arrival and service times, and
c the number of homogeneous servers, representing service
parallelism. It is relevant to note that c does not necessarily
represent the number of instances, as, in some cases, service
instances will have some form of internal parallelism.

TABLE I
NOTATION

Symbol Meaning
λ Request arrival rate.
µ Request service rate.
c Number of parallel servers in the queueing system model.
I Number of physical microservice instances.
φ Internal parallelism of each instance.
W Random variable representing time in queue.
Q Random variable representing queue length.
S Random variable representing service time.
T Random variable representing total system time.
ai Arrival time of the ith request.
wi Time spent in queue by the ith request.
bi Service start time of the ith request.
di Departure time of the ith request.
si Service time of the ith request.
ti Total system time of the ith request.
ρ Occupation rate.
ΠW Probability that a request has to wait.

Table I presents the notation used in the rest of the paper.
We have two direct applications for the model: 1) Estimate
the maximum throughput capacity of an instance (bottleneck
detection); 2) Determine the number of instances, to achieve
a desired request time distribution, for a given request arrival
rate (quality of service).
Given the M/M/c model of a microservice of parameters
{µ̂, ĉ} we want to answer three questions. First, what is the
maximum throughput capacity of the service? Second, under
a given load λ, what is the distribution of total system time T ?
And finally, given a load λ, what is the necessary number of

instances, to expect a percentage of requests below a system
time threshold?

For the first question, an estimation of the maximum av-
erage throughput capacity of a M/M/c queue is trivially
obtained from cµ. The other two questions can be answered
by determining the Cumulative Distribution Function (CDF)
P (T < t) for a given queue of parameters {λ, µ, c}, where
T is the random variable representing total system time. As
this formula is context dependent on the queue parameters

{λ, µ, c}, for clarity, we will sometimes use the notation
CDF (λ, µ, c, t) = P (T < t), where T is the random variable
for total system time of a request in an M/M/c queue of
parameters {λ, µ, c}. Following Adan et al. [4], P (T < t)
can be calculated from W and S, the random variables
representing waiting time and service time respectively, as
shown in Equation 1.

P (T < t) = 1− P (W + S > t)

=

{
1− ΠW

1−c(1−ρ) e
−cµ(1−ρ)t +

(
1− ΠW

1−c(1−ρ)

)
e−µt if c(1− ρ) 6= 1

1− (µΠW t+ 1)e−µt if c(1− ρ) = 1
(1)

A natural application here, in the context of determining
quality of service, is to compute the expected percentage of
requests with total system time bigger than a given threshold
r by computing 1− P (T < r) for a predicted load.

For the last question, we wish to determine the smallest
integer number of instances I that ensure (at least) a given
distribution of total system time T , where the probability of
a request time being over a threshold r, is at most a desired
probability p, or 1− P (T < r) ≤ p.
Parameter estimation: To model a given microservice, we
need to estimate two parameters, the service rate µ̂ and its
parallelism ĉ from a sample of arrival and departure times for
observed requests.

The estimation of request arrival rate λ̂ can be easily
obtained using moment or maximum-likelihood methods. For
service rate µ̂, we need to make sure that the set of sampled
requests ι was taken in an interval of time where the queue
was empty, therefore

∑
i∈ι
wi = 0. Finding an adequate interval

may seem daunting at first, but once we have ĉ, we can
then look for a continuous set of samples S taken from an
interval, where there are at most ĉ requests in the system. An
alternative heuristic method, independent of ĉ, is running a
sliding window average of a statistically significant width, and
finding the contiguous sub-sample with the lowest average, as
we know that average service time monotonically increases
with load (ρ).

To estimate the parallelism c, we used the method proposed
by Park et al. [5], for analysis of unobservable queues.
According to their method, the estimation problem can be
expressed as the optimization statement in Equation 2, where
D(i;j) is the ith order statistic, among the first j departure
times.

Minimize
ĉ

N∑
i=1

(ŝi − E[Ŝ])2

subject to b̂i = ai, i = 1, . . . , ĉ

b̂i = max{ai, D(i−ĉ;i−1)}
ŝi = di − b̂i, ∀i
ŝi > 0, ∀i
1 ≤ ĉ ≤ N, ĉ ∈ N

(2)



Although accurate under simulation, this method is very
sensitive to time measurement imprecisions, typical of real-
life scenarios. These imprecisions can arise from parts of the
workflow that are hard to measure, typically time spent in
sockets, load balancers, in the operating system, and so on.
As we already have a method for estimating the service rate
µ̂ , as well as a sample of request times, we can calculate ĉ to
maximize the Mean Square Error (MSE) between observed
request time distribution eCDF and the prediction CDF
made with the model resulting from {λ, µ̂, ĉ}.

III. EXPERIMENTAL SETUP

We validated our model choice and parameter estimation
techniques against both a simulated and a real microser-
vice. The simulation was used to validate the parametriza-
tion methodology, in a situation where the assumptions were
known to hold true. The second experiment, with the real
microservice was meant to validate both the quality of the
parametrization in a real-world scenario, and measure the
quality of the resulting model.

A. Simulation with qcomputer

Using qcomputer [6], an R package for queue system
simulation, we create a simulated microservice, with ex-
ponentially distributed service times and a Poisson arrival
process. Using this model, we generated samples of arrival and
departure times for different parameterizations, from which
we can then calculate response times. We then attempted to
estimate the parameters {λ, µ, c} from the samples, using the
estimators described in section II. Using the resulting model,
we calculated the predicted response time distribution and
compared it to the empirical distribution of the sample, to
calculate the MSE between both.

B. Experiment with a Microservice

To test the approach in a more realistic setting, where some
assumptions may not hold, we deployed a microservice-based
application on a virtual machine with 16 vCores and 32GiB
of system memory, running Ubuntu Server 16.04.3 LTS. The
services, respectively, data stores and load balancers were
packaged in docker containers and orchestrated and scaled
using docker compose. The target microservice was behind
a simple gateway service, and an nginx load balancer. Mea-
surements of arrival and departure time, measured from the
load balancer, were extracted using OpenTracing [7] compliant
tracing instrumentation.

To load the deployments with approximately exponen-
tially distributed inter-arrival request times, we used Apache
JMeter. The naive approach would be to have each client
thread sleeping for an exponentially distributed time between
requests. However, since a client thread can only start a new
request once it gets the previous reply, most time they will
be left waiting for a reply, thus degenerating the distribution
of inter-arrival times away from the desired exponential. To
mitigate this effect, we attempted to simulate a large number
of clients generating load at random intervals, which is known

TABLE II
ESTIMATION OF µ FROM SAMPLES WITH DIFFERENT OCCUPATIONS (ρ).

ρ c µ µ̂ Error (%)
0.0333 1 30 29.24 3%
0.8333 1 30 5.02 83%
0.8333 2 30 9.88 67%
0.8333 3 30 2.13 93%
0.8889 3 30 8.50 72%

TABLE III
PARAMETER ESTIMATION RESULTS AND ERROR WITH SIMULATION DATA.

Setting λ̂ µ̂ ĉ MSE Bias
S1 0.99 29.24 1 0.000028 -0.00300
S2 24.89 29.24 1 0.001135 -0.02685
S3 50.38 29.24 2 0.000613 -0.01476
S4 74.92 29.24 3 0.001202 -0.02473
S5 79.43 29.24 3 0.002472 -0.04344

to produce approximately exponential inter-arrival times [3].
To do this, we ran the experiments with a number of threads
much larger than the target load, and have them waiting a uni-
formly distributed random time between requests. The larger
the number of threads, the larger the average waiting time,
thus diluting the degeneration cause by the server response
time. To achieve a load of L requests per second with τ
threads, we generate the sleep time for threads from a random
uniform number between 0 and U (milliseconds), according
to U = 2000τ

L . Meaning each thread, on average, will make a
request every U

2 milliseconds.

IV. RESULTS

This sections presents the results obtained. To measure the
error we calculated both MSE and Bias.

A. Simulation with qcomputer

We experimented with five settings in the simulation. The
values [1, 1, 2, 3, 3] for c, 30 for all µ and [1, 25, 50, 75, 80]
for λ, were used.

Using the sliding window average method, we obtained the
results in Table II. Only the estimation in the first line is
acceptable, and, in fact, very good. This shows the importance
of selecting the correct sample for estimating service rate,
as their quality will be inversely correlated with occupation.
The best estimator for service rate µ̂, it was used to model
all the other settings, as they refer to the same simulated
microservice. We know the load to be constant and the inter-
arrival times exponentially distributed, for each setting, we got
an estimate for arrival rate by the moments method.

When it came time to get an estimate of the parallelism
of the service, ĉ, we employed both Park et al. [5] and our
alternative method to calculate it by minimizing the MSE. In
Table III, presents the estimations obtained.

For each setting, we calculated the predicted cumulative
distribution function CDF (λ̂, µ̂, ĉ, t) and the empirical cumu-
lative distribution function eCDF (t) and calculated the MSE
between samplings from those two functions. Figure 1 shows
the eCDF values, the prediction CDF and the cumulative
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Fig. 1. Comparison of CDF (λ̂, µ̂, ĉ, t) and eCDF (t) for simulated settings and real settings.

TABLE IV
PARAMETER ESTIMATION RESULTS.

Setting λ̂ µ̂ ĉ (Park et al.) ĉ (Optim.)
R1 16.16 17.50 1 2
R2 24.46 17.92 2 2
R3 48.86 28.05 3 3
R4 73.09 29.62 5 5
R5 90.91 24.91 7 5

distribution function of an exponential distribution of rate
µ̂ (“Exp” in the plots), which represents the distribution of
service time (S). In simple terms, this would be the expected
response time distribution if there was no queue time. The
exact values are available in Table III. The MSE and Bias
value demonstrate that eCDF (t) and CDF (λ̂, µ̂, ĉ, t) are
quite close to each other, in the simulated environment. To
conserve space, we omitted the figure for the best setting.

B. Experiment With a Microservice

We used five deployment settings to evaluate the param-
eterization technique and adequacy of the resulting model
with the number of instances taking the values [1, 1, 2, 3, 3]
and [16, 25, 50, 75, 85] for arrival rate. Given the arrival and
departure times for each request, we estimated the model
parameters. The service rate was estimated using the sliding
window method, to maintain independence from ĉ. Parallelism,
ĉ, was obtained using two methods, the one proposed by
Park et al. [5], and the optimization that minimizes the MSE
between observed and predicted response times. Table IV
shows the results of the estimation step.

The second method (Optim.) produced better estimations
and was used for the remainder of the experiment. Note
however, that they could in principle be used together to get
a higher quality estimation.
CDF (λ̂, µ̂, ĉ, t) was calculated for each sample and com-

pared to their eCDF (t) (Figure 1). Table V shows the
prediction error. Besides predicting the cumulative distribution
function, we also calculated some other typical queueing
system performance metrics, namely, mean queue length and
mean request time. Table VI shows the resulting values,
enabling a comparison between performance metrics and the
occupation rate. Note that E[T ] increases as ρ → 1 but it is

TABLE V
PREDICTION MEAN SQUARE ERROR (MSE) AND BIAS.

Setting Park et al. Optimization
MSE Bias MSE Bias

R1 0.082144 -0.195274 0.000704 0.014506
R2 0.000912 0.003089 0.000912 0.003089
R3 0.001453 0.007380 0.001453 0.007380
R4 0.003610 0.012120 0.003610 0.012120
R5 0.006047 0.030471 0.002498 0.019917

TABLE VI
PERFORMANCE PREDICTIONS.

Setting ρ E[Q] E[T ]
R1 0.46 0.25 0.073
R2 0.68 1.19 0.104
R3 0.58 0.46 0.045
R4 0.49 0.12 0.035
R5 0.73 1.16 0.053

not the only determining factor, E[T ] slowly decreases as c
grows as the chance of finding an available server increases.

While the results still have acceptable error, they not as good
as the ones from the simulated experiment. This observation
is explored in detail in Section V.

V. DISCUSSION

The experiments with the simulated data exposed two
important aspects. First, the quality of the estimation of service
rate (µ̂) is very dependent on occupation. To get a good
estimate of service rate, we need to sample it under low
occupation. With setting S1, we were able to get an estimate
µ̂, and accurately predict the behavior of the other settings.

In a real setting there are measurement imprecisions and
external factors. In this particular case, we noticed that due
to some implementation detail, the service time was not
independent from the number of instances, and improved with
the number of instances (refer to Table IV). This might be an
artifact of some caching at the back-end, in this case a shared
data store, which is a distortion of the intended setting. So far,
we avoided more general queuing systems (G/G/c), as they
are not easily composable and lack closed solutions.

There are some limitations inherent to the approach. The
estimation method for service rate is very sensitive to occupa-



tion, thus requiring a favorable sampling period, where load on
the microservice to be modeled is low. The estimation methods
for parallelism have distinct limitations. The one proposed by
Park et al. [5] requires having complete sampling, starting at
an instant when there were no requests in the system The
optimization method, requires already having a good estimate
of service rate, and will be dependent on its quality.

As for the model itself, since E[T ] grows asymptotically to
infinity as ρ → 1, the model is far more sensitive to error in
estimation, under higher loads, for which we are attempting
to predict the distribution of T .

Our goal for the future is composing the individual models
in networks. A deeper characterization and further study of
this modeling approach is necessary. As such, we will run
additional experiments in a more varied set of instrumented
microservices. To model services in place in a production
setting, methods to quantify the impact of services on other
upstream services, which depend on them, will have to be
developed. For services that have more general service rates,
we will attempt to model them as tandem queues.

VI. RELATED WORK

The literature is rich with approaches to model and analyze
systems. Bahl et al. [8], uses network traffic to create and
inference Graph model, to check service degradation and fail-
ures in an enterprise network. However, it needs the enterprise
network topology, and therefore it is closely coupled to the
system. Urgaonkar et al. [9], propose an analytically model,
for multi-tier internet services, using multi-tier queue, where
each queue representing different layers of the application.
Similarly, Bi et al. [10], use M/M/c queues in an open
network to model multi-tier systems for dynamic provisioning
in cloud deployments. Although associate with our approach,
they aim to model multi-tier services, while our goal is to
create model of microservice-based distributed systems. Using
networks of queues or layered queues is suggested in various
works [11]–[13]. However they focus on manual modeling at
design time or from deep knowledge of the system, instead of
trying to extract them from an existing system or considering
other data driven approaches. There are approaches to model
the performance and response times of services, [14] suggests
modeling classic web servers as M/G/1/K ∗ PS queues.

While others have explored similar approaches, models with
no assumption about processing time, like M/G/1, G/G/c,
although more expressive have no closed analytical solutions
and cannot be easily composed. Heinrich et al. [15] explores
the intricacies of microservice-based systems and lays out
the existing challenges. He points out that existing modeling
approaches are not adequate for the typical scenarios of the
modern microservice-based systems.

VII. CONCLUSION

In this paper we proposed a queuing theory based modeling
approach to characterize the performance of microservice-
based systems. Models of individual microservices can be
used to characterize their response time distribution. The
accompanying analytical tools can be used to predict response

times under any load and determine the required number
of instances to maintain a desired quality of service. The
individual models are composable, for example as networks,
and can in the future be used to reason about the performance
of the resulting system. In that setting, as the model gives
an implicit notion of capacity, they can additionally be used
for bottleneck detection and optimal resource allocation at a
global level.
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